XyJax version 2 Test Page
\[ \xymatrix{A \ar@{}[dr]|{=} \ar[d] \ar[r] & B \ar[d] \\ B \ar[r] & C } \] \[ \newcommand\degrees{^{\circ}} \begin{xy} \xyimport(7,50)(-0.5, 0){\bbox[4cm]{}}*\frm{-}, ,0;/u2pc/**{} ,(.5,5)*@{|}*+!R{40\degrees} ,(.5,25)*@{|}*+!R{60\degrees} ,(.5,45)*@{|}*+!R{80\degrees} ,0;/r2pc/**{} ,(1,0)*@_{|}*++!U\txt\small{Su} ,(2,0)*@_{|}*++!U\txt\small{Mo} ,(3,0)*@_{|}*++!U\txt\small{Tu} ,(4,0)*@_{|}*++!U\txt\small{We} ,(5,0)*@_{|}*++!U\txt\small{Th} ,(6,0)*@_{|}*++!U\txt\small{Fr} ,(7,0)*@_{|}*++!U\txt\small{Sa} \end{xy} \] \[ \begin{xy} \xyimport(3.7, 3.7)(1.4, 1.4){\includegraphics[width=15em, height=15em]{ellip.png}} ,!D+<2pc, -1pc>*+!U\txt{Rational points on the elliptic curve: $x^3+y^3=7$.} ,(1,0)*+!U{1}, ,(-1,0)*+!U{-1} ,(0,1)*+!R{1}, ,(0,-1)*+!R{-1} ,(2,-1)*+!RU{P} ,(-1,2)*+!RU{-P} ,(1.3333,1.6667)*+!UR{-2P} ,(1.6667,1.3333)*!DL{\;2P} ,(-.5,1.9)*++!DL{3P} ,(1.9,-.5)*!DL{\;-3P} ,(-1,2.3)*+++!D{\infty}*=0{},{\ar+(-.2,.2)} ,(.5,2.3)*+++!D{\infty}*=0{},{\ar+(-.2,.2)} ,(2.3,-1)*+++!L{\infty}*=0{},{\ar+(.2,-.2)} \end{xy} \] \[ \includegraphics[width=8em, height=8em]{ellip.png}A \begin{xy} 0*{\includegraphics[width=8em, height=8em]{ellip.png}}*\frm<0.3em>{-} \end{xy} B \] \[ A \begin{xy} <-3em,0em>;0**@{-}, 0*[F]{ABCDEF} \end{xy} B \] \[ \newcommand\nt[1]{\langle\text{#1}\rangle} \newcommand\from{\leftarrow} \begin{array}{clcll}\hline \text{Impl} & \text{Syntax} &&&\quad& \text{Action} \\\hline \checkmark & \nt{xy env} & \to & \bf\text{\begin{xy} $\nt{pos}\,\nt{decor}$ \end{xy}} && c \from \nt{coord} \\ \checkmark & \nt{pos} & \to & \nt{coord} && c \from \nt{coord} \\ \checkmark & & | & \nt{pos}\,{\bf+}\,\nt{coord} && c \from \nt{pos} + \nt{coord}^{3a} \\ \checkmark & & | & \nt{pos}\,{\bf-}\,\nt{coord} && c \from \nt{pos} - \nt{coord}^{3a} \\ \checkmark & & | & \nt{pos}\,{\bf!}\,\nt{coord} && c \from \text{$\nt{pos}$ then skew$^{3b}$ $c$ by $\nt{coord}$} \\ \checkmark & & | & \nt{pos}\,{\bf.}\,\nt{coord} && c \from \text{$\nt{pos}$ but also covering$^{3c}$ $\nt{coord}$} \\ \checkmark & & | & \nt{pos}\,{\bf,}\,\nt{coord} && c \from \text{$\nt{pos}$ then $c \from \nt{coord}$} \\ \hline \end{array} \] \[ A\xymatrix{ (f_1)_*x_1 \ar[r]_a \ar[d]_{(f_1)_*b_1} & (f_2)_*x_2 \ar[d]^{(f_2)_*b_2} \\ (f_1)_*x'_1 \ar[r]^{a'} & (f_2)_*x'_2. }B \] \[ A\begin{xy} \xymatrix{ R \ar@<1ex>[r] \ar@<-1ex>[r] & U \ar[r]^{a} & F } \end{xy}B \] \[ \newdir{m}{!/4.5pt/@{|}*:(1,-.2)@^{>}*:(1,.2)@_{>}} \begin{xy} 0*+{A}="a", <5pc, 1pc>*+{B}="b" \ar @{=m} "a";"b" \end{xy} \] \[ \newdir{m}{!/4.5pt/@{|}*:(1,-.2)@^{>}*:(1,.2)@_{>}} \begin{xy} 0*+{A}="a", <5pc, 1pc>*+{B}="b" \ar @{=m} "a";"b" \end{xy} \] \[ \newdir{m}{{}*!/-2pt/@^{(}} \begin{xy} 0*+{A}="a", <5pc, 1pc>*+{B}="b" \ar @{m->} "a";"b" \end{xy} \] \[ \newdir{ >}{{}*!/-3pt/@{>}} \begin{xy} 0*+{A}="a", <5pc, 1pc>*+{B}="b" \ar @{>->} "a";"b" <2pt> \ar @{ >->} "a";"b" <-2pt> \end{xy} \] \[ \begin{xy} \xymatrix{ \mathcal R \ar[r]<2pt>^{r_1} \ar[r]<-2pt>_{r_2} & S \ar[r]^q \ar[dr]_f & S / \mathcal R \ar@{.>}[d]^{\bar f} \\ & & T } \end{xy} \] \[ \newcommand\Ker{\mathrm{Ker}\,} \newcommand\Coker{\mathrm{Coker}\,} \begin{xy} \xymatrix { 0 \ar@[red][r] & {\Ker f} \ar@[red][r] & {\Ker a} \ar@[red][r] \ar[d] & {\Ker b} \ar@[red][r] \ar[d] & {\Ker c} \ar@[red]@`{[]+/r10pc/, [dddll]+/l10pc/}[dddll]_(0.55)d \ar[d] \\ & & A \ar@[blue][r]^f \ar@[blue][d]^a & B \ar@[blue][r] \ar@[blue][d]^b & C \ar@[blue][r] \ar@[blue][d]^c & 0 \\ & 0 \ar@[blue][r] & A' \ar@[blue][r] \ar[d] & B' \ar@[blue][r]^{g'} \ar[d] & C' \ar[d] \\ & & {\Coker a} \ar@[red][r] & {\Coker b} \ar@[red][r] & {\Coker c} \ar@[red][r] & {\Coker g'} \ar@[red][r] & 0 } \end{xy} \] \[ \begin{xy} \xymatrix { *+!!A{c} \ar[r] \ar[d] & *+!!A{a\frac{x}{y}} \ar[r] \ar[d] \ar[ld] & *+!!A{\underline{\underline{g}}} \ar[r] \ar[d] \ar[ld] & *+!!A{\hat{\hat{\overline{\overline{h^2}}}}} \ar[d] \ar[ld] \\ {c} \ar[r] & {a\frac{x}{y}} \ar[r] & {\underline{\underline{g}}} \ar[r] & {\hat{\hat{\overline{\overline{h^2}}}}} \\ } \end{xy} \] \[ \begin{xy} 0+/r-4pc/ *@{x} * \txt{A}, 0+/r-3.5pc/*@{x} *! \txt{A}, 0+/r-3pc/ *@{x} *!!A \txt{A}, 0+/r-2pc/ *@{x} * {A}, 0+/r-1.5pc/*@{x} *! {A}, 0+/r-1pc/ *@{x} *!!A {A}, 0 *@{x} * {\displaystyle \int}, 0+/r0.5pc/ *@{x} *! {\displaystyle \int}, 0+/r1pc/ *@{x} *!!A {\displaystyle \int}, 0+/r2pc/ *@{x} * {=}, 0+/r2.5pc/ *@{x} *! {=}, 0+/r3pc/ *@{x} *!!A {=}, 0+/r4pc/ *@{x} * \object{\displaystyle \int}, 0+/r4.5pc/ *@{x} *! \object{\displaystyle \int}, 0+/r5pc/ *@{x} *!!A \object{\displaystyle \int}, 0+/r7pc/ *@{x} * \composite{{\displaystyle \int}*{ABC}}, 0+/r8pc/ *@{x} *! \composite{{\displaystyle \int}*{ABC}}, 0+/r9pc/ *@{x} *!!A \composite{{\displaystyle \int}*{ABC}}, 0+/r11pc/ *@{x} * \xybox{0+/d1pc/;0+/r1pc/**@{-}}, 0+/r13pc/ *@{x} *! \xybox{0+/d1pc/;0+/r1pc/**@{-}}, 0+/r15pc/ *@{x} *!!A \xybox{0+/d1pc/;0+/r1pc/**@{-}}, \end{xy} \] \[ \begin{xy} \xymatrix @=4pc { x \ar^(0.35){f'}[r] \ruppertwocell^f{\alpha} \rlowertwocell_{f''}{\alpha'} & y } \end{xy} = \begin{xy} \xymatrix @=4pc { x \rtwocell^f_{f''}{*[r]{\scriptstyle \alpha'\cdot\alpha}} & y } \end{xy} \] \[ \begin{xy} \xymatrix @=5pc { A \rtwocell^f_g{\alpha} & B \\ A \ruppertwocell^f{\alpha} \rlowertwocell_h{\beta} \ar[r]_(.35)g & B \\ A \xuppertwocell[r]{}^f{\alpha} \xlowertwocell[r]{}_h{\beta} \ar[r]_(.35)g & B \\ \txt{Clouds}\rtwocell<10> _{\tiny evapolation} ^{\tiny precipitation} {'{\mathbf{H_2 O}}} & \txt{Oceans} \\ P \rtwocell~!~'{\dir{>>}}~`{\dir{|}}^{<1.5>M}_{<1.5>M'}{=f} & S \\ P \rtwocell^{<1.5>*\dir{x}}{=f} & S \\ \txt{FUn} \rtwocell<8>~^{{?}}~_{{\circ}~**{\bullet}}{!\&} & \txt{gaMES} \\ } \end{xy} \] \[ \begin{xy} \xymatrix @=5pc { A \rtwocell^f_g^h & B \ruppertwocell^f{\alpha} \rlowertwocell<-15>_h{\beta} \ar[r]_(.35)g & C\\ A \ruppertwocell^{f}{\alpha} \rlowertwocell_h{\beta} \ar[r]_(.35)g & B \\ P \rtwocell~!~'{\dir{>>}}~`{\dir{|}}^{<1.5>M}_{<1.5>M'}{=f} & S \\ P \rtwocell^{<2>*@{>}}_{<2>*@{>}}{<3>f} & S & P' \ltwocell^{<2>*@{>}}_{<2>*@{>}}{<3>f} \\ P \rtwocell^{f} & S \rtwocell^f & R \\ P \rtwocell\omit^f{\alpha} & S \rtwocell<\omit>^f{\beta} & R \\ P \rcompositemap_f^g & S \\ } \end{xy} \] \[ \begin{xy} 0*++[c]\xybox{ \xymatrix @=1.5pc @*[F-] @*[o] @*+= { 3 \ar[r]^3 \ar[d]_3 \POS+/lu 1em/*\txt\tiny{1} & 1 \ar[d]^1 \POS+/ru 1em/*\txt\tiny{2} \\ 3 \POS+/ld 1em/*\txt\tiny{1'} & 1 \POS+/rd 1em/*\txt\tiny{2'} }}="lu", "lu"+/r8em/ *++[c]\xybox{ \xymatrix @=1.5pc @*[F-] @*[o] @*+= { 3 \ar[d]_3 \ar[rd]^3 & 1 \ar[l]_3 \\ 3 & 1 \ar[u]_1 }}="u", "u"+/r8em/ *++[c]\xybox{ \xymatrix @=1.5pc @*[F-] @*[o] @*+= { 3 \ar[r]^3 & 1 \ar[ld]^(0.7){3} \ar[d]^2 \\ 3 \ar[u]^3 & 1 \ar[lu]_(0.7){3} }}="ru", "ru"+/d8em/ *++[c]\xybox{ \xymatrix @=1.5pc @*[F-] @*[o] @*+= { 3 \ar[d]_6 \ar[rd]_(0.7){3} & 1 \ar[l]_3 \\ 3 \ar[ru]_(0.7)3 & 1 \ar[u]_2 }}="r", "r"+/d8em/ *++[c]\xybox{ \xymatrix @=1.5pc @*[F-] @*[o] @*+= { 3 \ar[r]^3 & 1 \ar[ld]^(0.7){3} \ar[d]^1 \\ 3 \ar[u]^6 & 1 \ar[lu]_(0.7){3} }}="rd", "rd"+/l8em/ *++[c]\xybox{ \xymatrix @=1.5pc @*[F-] @*[o] @*+= { 3 \ar[d]_3 & 1 \ar[l]_3 \\ 3 \ar[ru]_3 & 1 \ar[u]_1 }}="d", "d"+/l8em/ *++[c]\xybox{ \xymatrix @=1.5pc @*[F-] @*[o] @*+= { 3 \ar[r]^3 & 1 \\ 3 \ar[u]^3 & 1 \ar[u]_1 }}="ld", "lu"+/d8em/ *++[c]\xybox{ \xymatrix @=1.5pc @*[F-] @*[o] @*+= { 3 & 1 \ar[l]_3 \ar[d]^1 \\ 3 \ar[u]^3 & 1 }}="l", \POS "lu" \ar "u"^2 \POS "u" \ar "ru"^1 \POS "ru" \ar "r"^2 \POS "r" \ar "rd"^1 \POS "rd" \ar "d"_2 \POS "d" \ar "ld"_1 \POS "lu" \ar "l"_1 \POS "l" \ar "ld"_2 \end{xy} \] \[ \xymatrix { & x \ar[r] \ar[d]^\alpha & y \ar[r] \ar[d]^\beta & z \ar[r] \ar[d]^\gamma & 0 \\ 0 \ar[r] & u \ar[r] & v \ar[r] & w } \] \[ \begin{xy} \xymatrix @W=3pc @H=1pc @R=0pc @*[F-] { : \save+<-4pc,1pc>*{\it root} \ar[] \restore \\ {\bullet} \save*{} \ar `r[dd]+/r4pc/ `[dd] [dd] \restore \\ {\bullet} \save*{} \ar `r[d]+/r3pc/ `[d]+/d2pc/ `[uu]+/l3pc/ `[uu] [uu] \restore \\ 1 } \end{xy} \] \[ \begin{xy} \xymatrix @!=1pc { **[l] A\times B \ar[r]^{/A} \ar[d]_{/B} & B \ar[d]^{\times A} \\ A \ar[r]_{B\times} & **[r] B\times A } \end{xy} \] \[ \begin{xy} \xymatrix"*"{A&B\\C&D} \POS *\frm{--} \POS-(10,3) \xymatrix{ A' \ar@{.}["*"] & B' \ar@{.}["*"] \\ C' \ar@{.}["*"] & D' \ar@{.}["*"] } \POS*\frm{--} \end{xy} \] \[ \begin{xy} \xymatrix { {\mathscr{C}} & a \ar[r]^f \ar[dr]_{g \circ f} & b \ar[d]^g & \ar@{~>}[r]^F & & Fa \ar[r]^{Ff} \ar[dr]_*[l]{\scriptstyle F(g\circ f) = Fg\circ Ff} & Fb \ar[d]^{Fg} & {\mathscr{D}} \\ && c & \ar@{~>}[r]^F &&& Fc } \end{xy} \] \[ \begin{xy} \xymatrix { *\txt{start} \ar[r] & *++[o][F-]{0} \ar@(r,u)[]^b \ar[r]_a & *++[o][F-]{1} \ar[r]^b \ar@(r,d)[]_a & *++[o][F-]{2} \ar[r]^b \ar `dr_l[l] `_ur[l] _(.2)a[l] & *++[o][F=]{3} \ar `ur^l[lll] `^dr[lll]^b [lll] \ar `dr_l[ll] `_ur[ll] [ll] } \end{xy} \] \[ \begin{xy} \xymatrix @R=1pc { \zeta \ar@{|->} [dd] \ar@{.>}_\theta [rd] \ar@/^/^\psi [rrd] \\ & \xi \ar@{|->} [dd] \ar_\phi [r] & \eta \ar@{|->} [dd] \\ P_{F}\zeta \ar_t [rd] \ar@/^/ [rrd]|!{[ru];[rd]}{\hole} \\ & P_{F}\xi \ar [r] & P_{F}\eta } \end{xy} \] \[ \begin{xy} \xymatrix { U \ar@/_/[ddr]_y \ar@{.>}[dr]|{\langle x,y \rangle} \ar@/^/[drr]^x \\ & X \times_Z Y \ar[d]^q \ar[r]_p & X \ar[d]_f \\ & Y \ar[r]^g & Z } \end{xy} \] \[ \begin{xy} \xymatrix { A \POS[];[d]**\dir{~},[];[dr]**\dir{-} \\ B & C \POS[];[l]**\dir{.} } \end{xy} \] \[ \begin{xy} \xymatrix @ur @*[F-] @W=3pc @H=1pc @R=0pc { {ABC} \ar "2,2" & {\int_0^\infty} \\ **[Fo:<0.5pc>]{ABC} & {\displaystyle \int_0^\infty} \\ *[F-]{A} & \\ } \end{xy} \] \[ \begin{xy} \xymatrix@*[F-]"*"{ ABC \ar [rd] \ar ["*"0,1] & B \\ A{CDE}{C\&DE} & D \\ \dir{x} & \{\&\} & {\displaystyle \int_0^\infty} \\ \txt{ABC} & {} \ar "3,2" \\ *{ABC} c+/u10pt/ \ar "3,1" } \end{xy} \] \[ \begin{xy} \xyshowAST{ \xymatrix @!R @!C @! @!R0 @!R=1pc @!C0 @!C=1pc @!0 @!=1pc @M=1.1pc @W=0em @H=1em @L=0.2em @R=3pc @C=2pc @+=0.1pc { @*[F-] @*[o] ABC \ar "1,2" \ar "2,1" & B \\ A{CDE}{C\&DE} & D \\ \dir{x} & \{\&\} \\ \txt{ABC} & \xymatrix{A&B\\C&D} \ar "r" \\ *{ABC} c+/u10pt/ \ar "ur" } } \end{xy} \] \[ \begin{xy} <3pc,0pc>:(0,0), 0*+\txt{start}="start", (1,0) *+=+[o][F-]{0}="0", (2,0) *+=+[o][F-]{1}="1", (3,0) *+=+[o][F-]{2}="2", (4,0) *+=+[o][F=]{3}="3", \POS "start" \ar "0" \POS "0" \ar@(r,u) "0"^b \ar "1"_a \POS "1" \ar "2"^b \ar@(r,d) "1"_a \POS "2" \ar "3"^b \ar `dr_l "1" `_ur "1" _(.2)a "1" \POS "3" \ar `ur^l "0" `^dr "0"^b "0" \ar `dr_l "1" `_ur "1" "1" \end{xy} \] \[ \begin{xy} 0*\cir<2pt>{}="a", (20,0)*\cir<2pt>{}="b", "a";"a" **\crv{+/ur 3pc/ & p+/ul 3pc/} ?(.5)*!/^3pt/{a} \end{xy} \] \[ \begin{xy} *{\circ}="b", \ar @[red] @(ur,ul) c \ar@{.>}@(dr,ul) (20,0)*{\bullet} \end{xy} \] \[ \begin{xy} \POS ( 0, 10) *\cir<2pt>{}="a", (20,-10) *\cir<2pt>{}="b" \POS "a" \ar @`{(0,-30), (20,-30)} "b" |\uparrow \end{xy} \] \[ \begin{xy} \POS ( 0, 10) *\cir<2pt>{}="a", (20,-10) *\cir<2pt>{}="b" \POS "a" \ar @2 @/^1ex/ "b" |\uparrow \POS "a" \ar @2 @/_1ex/ "b" |\downarrow \end{xy} \] \[ \begin{xy} \POS ( 0, 10) *+\cir<2pt>{}="a", (20,-10) *+\cir<2pt>{}="b", (30,10) *+\cir<2pt>{}="c", \POS "a" \ar @/^1.5ex/ ^{f} '"b" "c" |\uparrow \POS "a" \ar @/_1.5ex/ "b" |\downarrow \end{xy} \] \[ \begin{xy} \POS (0,0) \ar @^{(->} (20,7) \end{xy} \] \[ \begin{xy} \POS (0,0) \ar @{>>*\composite{\dir{x}*\dir{+}}<<} (20,7) \end{xy} \] \[ \begin{xy} \POS (0,0) \ar @{*{x}*{y}*{z}} (20,7) \end{xy} \] \[ \begin{xy} \xyshowAST{ ( 0, 10) *\cir<2pt>{}="a", (20,-10) *\cir<2pt>{}="b", "a";"b" **\crv{{**@{} ?+/_ 3ex/}} } \end{xy} \] \[ \begin{xy} \xyshowAST{ \POS ( 0, 10) *\cir<2pt>{}="a", (20,-10) *\cir<2pt>{}="b" \POS "a" \ar @/^1.5ex/ "b" |\uparrow \POS "a" \ar @/_1.5ex/ "b" |\downarrow } \end{xy} \] \[ \begin{xy} \xyshowAST{ *{\circ}="b" \ar @(ur, ul) c \ar @{.>}@(dr, ul) (20,0)*{\bullet} } \end{xy} \] \[ \begin{xy} \xyshowAST{ \ar @^{(->} (20,7) } \end{xy} \] \[ \begin{xy} *+{0} \PATH ~={**@{-}} ~+{|*{\hole}} '(1,20)*+{1} '(-2,40)*+{2} (0,60)*+{3} \POS *+{0} \PATH ~={**@{-}} ~+{|*{a}} '(20,1)*+{1} '(40,-2)*+{2} (60,0)*+{3} \end{xy} \] \[ \begin{xy} 0;<0.8pc,0pc>: (0,0)="o", "o"*!/rd 1em/{O}, "o"+/l 3pc/="xs";"o"+/r 13pc/="xe" **@{-} ?>*@{>} ?>*!/u 1em/{x}, "o"+/d 3pc/="ys";"o"+/u 8pc/="ye" **@{-} ?>*@{>} ?>*!/r 1em/{y}, (13,10)*{y=f(x)}, (13,-3)*{x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}}, (13.5,0)="x0" *!/u 1em/{x_0}, (-3,-4)="A", (15,9)="B", (1.5,5)="C", (10,-2.5)="D", "A";"B" **\crv{"C"&"D"}, ?!{"x0"+/d 3pc/;"x0"+/u 10pc/}="fx0" +/3pc/="L1e" -/12pc/="L1s";"L1e" **\dir{--}, ?!{"xs";"xe"}="x1" *!/u 1em/{x_1}, "fx0";"fx0"+/l 20pc/ **@{} ?!{"ys";"ye"}="y0" *!/r 1em/{f(x_0)}, "fx0";"y0" **@{.}, "x0";"fx0" **@{.}, "L1e" *!/l 5em/{y=f(x_0)+f'(x_0)(x-x_0)}, "A";"B" **\crv{~**@{} "C"&"D"}, ?!{"x1"+/d 3pc/;"x1"+/u 10pc/}="fx1" +/5pc/="L2e" -/15pc/="L2s";"L2e" **\dir{--}, ?!{"xs";"xe"}="x2" *!/u 1em/{x_2}, "fx1";"fx1"+/l 20pc/ **@{} ?!{"ys";"ye"}="y1" *!/r 1em/{f(x_1)}, "fx1";"y1" **@{.}, "x1";"fx1" **@{.}, "L2e" *!/l 5em/{y=f(x_1)+f'(x_1)(x-x_1)}, \end{xy} \] \[ \begin{xy} *+{0} \PATH ~={**@{-}} ~+{|*{a}} '(50,1)*+{1} '(100,-2)*+{2} (150,0)*+{3} \end{xy} \] Xy-picの例$(\begin{xy}(0,0);<1cm,0mm>**@{-} ?>*@{>} ?<>*!/_2mm/{\scriptstyle f}\end{xy})$です。 Xy-picの例$(\begin{xy}(0,0);<1cm,10mm>**@{} ?>*@3{>}\end{xy})$です。 \[ \begin{xy} (0,0) *\txt<10em>\displaystyle{ abc \\ defghi } \end{xy} \] \[ \begin{xy} (0,0) *{O}, (10,0) *\xybox{ (0,0)*@{x}; (10,10)*@{*}, **@{-} } \end{xy} \] \[ \begin{xy} (0,0)*\hbox{abc} \end{xy} \] \[ \begin{xy} (0,0)*\composite{ @{>} * @{|} } \end{xy} \] \[ \begin{xy} *[red][green][=NEW][blue]{A}, +/r2em/*[NEW]{B} \end{xy} \] \[ \begin{xy} (0,0)*=<30pt,10pt>[F**:aliceblue]{}; +/r25pt/*[r]{\text{aliceblue}}; +/d2em/*=<30pt,10pt>[F**:antiquewhite]{}; +/d2em/*[r]{\text{antiquewhite}}; +/d2em/*=<30pt,10pt>[F**:aqua]{}; +/d2em/*[r]{\text{aqua}}; \end{xy} \] \[ \begin{xy} *+<1.5pt>[F**:white]++[F**:red]{\text{text with background}}, +!D+/d1pc/, *++[F**:black][white]{\bf{\text{bold white on black}}} \end{xy} \] \[ \begin{xy} (0,0) *+++[o]{ABC}="0" *\frm{.e}; "0"+/ur5em/ *++{UR} **@{-}, "0"+/r5em/ *++{R} **@{-}, "0"+/dr5em/ *++{DR} **@{-}, "0"+/d5em/ *++{D} **@{-}, "0"+/dl5em/ *++{DL} **@{-}, "0"+/l5em/ *++{L} **@{-}, "0"+/ul5em/ *++{UL} **@{-}, "0"+/u5em/ *++{U} **@{-}, \end{xy} \] \[ \begin{xy} (0,0) *++={A} *\frm{o}; (10,7) *++={B} *\frm{o} **\frm{.} \end{xy} \] \[ \begin{xy} (0,0) *+++{A} ; (10,7) *+++{B} **\frm{.} **\frm{^\}} ; **\frm{_\}} \end{xy} \] \[ \begin{xy} (0,0)*+++{\text{\frm{_\}}}} *\frm{_\}} *\frm{.}="0" +/d3em/*+++{\text{\frm{_)}}} *\frm{_)} *\frm{.}, "0"+/r8em/*+++{\text{\frm{^\}}}} *\frm{^\}} *\frm{.}, +/d3em/*+++{\text{\frm{^)}}} *\frm{^)} *\frm{.}, "0"+/r16em/*+++{\text{\frm{\{}}} *\frm{\{} *\frm{.}, +/d3em/*+++{\text{\frm{(}}} *\frm{(} *\frm{.}, "0"+/r24em/*+++{\text{\frm{\}}}} *\frm{\}} *\frm{.}, +/d3em/*+++{\text{\frm{)}}} *\frm{)} *\frm{.}, \end{xy} \] \[ \begin{xy} (0,0)*++{\text{\frm{}}} *\frm{}="0", +/d3em/*++{\text{\frm{-}}} *\frm{-} *\frm{.}, +/d3em/*++{\text{\frm{=}}} *\frm{=} *\frm{.}, +/d3em/*++{\text{\frm{--}}} *\frm{--} *\frm{.}, +/d3em/*++{\text{\frm{,}}} *\frm{,} *\frm{.}, +/d3em/*++{\text{\frm{o}}} *\frm{o} *\frm{.}, +/d3em/*++{\text{\frm{oo}}} *\frm{oo} *\frm{.}, +/d3em/*++{\text{\frm{e}}} *\frm{e} *\frm{.}, +/d3em/*++{\text{\frm{ee}}} *\frm{ee} *\frm{.}, +/d3em/*++[]{\text{\frm{*}}} *\frm{*}, +/d1.8em/*++[]{\text{\frm{*}}}, +/d2em/*++[o]{\text{\frm{*}}} *\frm{*}, +/d1.8em/*++[o]{\text{\frm{*}}}, "0"+/r10em/*++{\text{\frm{.}}} *\frm{.}, +/d3em/*++{\text{\frm<8pt>{-}}} *\frm<8pt>{-} *\frm{.}, +/d3em/*++{\text{\frm<8pt>{=}}} *\frm<8pt>{=} *\frm{.}, +/d3em/*++{\text{\frm{o-}}} *\frm{o-} *\frm{.}, +/d3em/*++{\text{\frm<3pt>{,}}} *\frm<3pt>{,} *\frm{.}, +/d3em/*++{\text{\frm<8pt>{o}}} *\frm<8pt>{o} *\frm{.}, +/d3em/*++{\text{\frm<8pt>{oo}}} *\frm<8pt>{oo} *\frm{.}, +/d3em/*++{\text{\frm<20pt,8pt>{e}}} *\frm<20pt,8pt>{e} *\frm{.}, +/d3em/*++{\text{\frm<20pt,8pt>{ee}}} *\frm<20pt,8pt>{ee} *\frm{.}, +/d3em/*++[]{\text{\frm{**}}} *\frm{**}, +/d1.8em/*++[]{\text{\frm{**}}}, +/d2em/*++[o]{\text{\frm{**}}} *\frm{**}, +/d1.8em/*++[o]{\text{\frm{**}}}, "0"+/r20em/*++{\text{\frm<20pt>{.}}} *\frm<20pt>{.}, +/d3em/*++{\text{\frm<20pt>{-}}} *\frm<20pt>{-} *\frm{.}, +/d3em/*++{\text{\frm<20pt>{=}}} *\frm<20pt>{=} *\frm{.}, +/d3em/*++{\text{\frm<20pt>{--}}} *\frm<20pt>{--} *\frm{.}, +/d3em/*++{\text{\frm{-,}}} *\frm{-,} *\frm{.}, +/d3em/*++{\text{\frm{.o}}} *\frm{.o} *\frm{.}, +/d3em/*++{\text{\frm{-o}}} *\frm{-o} *\frm{.}, +/d3em/*++{\text{\frm{.e}}} *\frm{.e} *\frm{.}, +/d3em/*++{\text{\frm{-e}}} *\frm{-e} *\frm{.}, +/d3em/*++[]{\text{\frm<6pt>{*}}} *\frm{.} *\frm<6pt>{*}, +/d1.8em/*++[]{\text{\frm<6pt>{*}}}, +/d2em/*++[o]{\text{\frm<6pt>{*}}} *\frm{.e} *\frm<6pt>{*}, +/d1.8em/*++[o]{\text{\frm<6pt>{*}}}, \end{xy} \] \[ \begin{xy} (0,0)*[o]{p}; p+<2cm, -1cm>*{c} **@{--} *!/-1cm/^@{-} \end{xy} \] \[ \begin{xy} (0,0)*[o]{p}; p+<2cm, -1cm>*{c} **@{--} *!/-1cm/{2} \end{xy} \] \[ \begin{xy} *{+}; p+<2cm,1cm>*{+} **{} ?(1)*@{-} *!/-5pt/^@{-} *^@{-} *!/^-5pt/@{-} \end{xy} \] \[ \begin{xy} <3pc,0pc>:(0,0), (1,0) *+{0} *\cir<.6pc>{}="0", (2,0) *+{1} *\cir<.6pc>{}="1", (3,0) *+{2} *\cir<.6pc>{}="2", (4,0) *+{3} *\cir<.45pc>{}*\cir<.6pc>{}="3", 0*+{start}="start" \PATH ~={**@{-}} ~+{|>*@{>}} '"0" '"1" _a '"2" ^b "3" ^b \POS "3" \PATH ~={**@{-}} ~>{|>*@{>}} `ru^l "0" <-1pt> `^rd "0" _b "0" \POS "3" \PATH ~={**@{-}} ~>{|>*@{>}} `rd_l "1" <1pt> `_ru "1" "1" \POS "2" \PATH ~={**@{-}} ~>{|>*@{>}} `rd_l "1" <1pt> `_ru "1" _a "1" \POS "0"+/ru 1.2pc/*{\scriptstyle b}, "0" \PATH ~={**@{-}} `r^d/.7pc "0" <1pt> "0" |>*@{>} \POS "1"+/rd 1.2pc/*{\scriptstyle a}, "1" \PATH ~={**@{-}} `r_u/.7pc "1" <-1pt> "1" |>*u@{>} \end{xy} \] \[ \begin{xy} <4pc,0pc>:(0,0) *+{O}="O" \PATH ~={**@{-} ?>*@{>}} ~+{|*@{|}} `r^d (-1,-1)*+{A}="A" "A" \end{xy} \] \[ \begin{xy} <4pc,0pc>:(0,0) *+\txt{base}="base" \PATH ~={**@{-} ?>*@{>}} `l (-1,-1)*{A} ^a ` (1,-1) *{B} ^b `_ul (1,0) *{C} ^c `ul^l "base" ^d "base" ^e \end{xy} \] \[ \begin{xy} *+{A} *\cir<10pt>{}="me" \PATH ~={**@{-}} `ul^ur/12pt, "me" <3pt> "me" |>*v(1,1)@{>} \end{xy} \] \[ \begin{xy} <0.3pc,0pc>:(0,0) *+{0}*\cir{} \PATH ~={**@{-}} ~/{**@{~}} ~<{|<*@{<}} ~>{|>*@{>}} ~+{|-*@{|}} '(10,1)*+{1}*\cir{} ^{A}="A" '(20,-2)*+{2}*\cir{} (30,0)*+{3}*\cir{} \end{xy} \] \[ \begin{xy} \xyshowAST{ *+{0} \PATH ~={**@{-}} ~{~{(30,0)*+{3}} '(20,-2)*+{2}} '(10,1)*+{1} } \end{xy} \] \[ \begin{xy} @={(10,10), (20,0), (40,15)}, (0,0);(50,-10)**\crv{~@} \end{xy} \] \[ \begin{xy} *{A} \save\afterPOS{\POS **{} ?>*@{>} **@{-} \restore};p+<10mm,2mm> \end{xy} \] \[ \begin{xy} <4em,1em>="p"*{+}, <0em,0em>="c"*+<2pc,2pc>{+} *\cir{}="C", "p";"c"**@{}, ?>(2);"p"**@{.}, "p";"c"**@{}, "C"!P*{\times} \end{xy} \] \[ \begin{xy} <4em,2em>="p"*{+}, <0em,0em>="c"*+<3pc,2pc>{+}="C", "p";"c"**@{}, ?>(2);"p"**@{.}, "p";"c"**@{}, "C"!P*={\times}="P", "p";"P"**@{.} \end{xy} \] \[ \begin{xy} 0 *={\times} *{OOO} !R -L *{\otimes}, <0em,-2em> *={\times} *{OOO} !R *{\otimes} \end{xy} \] \[ \begin{xy} 0*{A}="A", "A"+/ru 2em/*{B}="B", "A"."B"*\cir{}, "A";"B"**@{-} \end{xy} \] \[ \begin{xy} 0;<1em,0em>: (0,0);p+/v a(18) 3em/**@{.} ?>*@{>}, (0,-1.5);p+/v a(18) 3em/**@{.} ?>*@{<}, (0,-3);p+/v a(18) 3em/**@{.} ?>*@{|}, (0,-4.5);p+/v a(18) 3em/**@{.} ?>*@{(}, (0,-6);p+/v a(18) 3em/**@{.} ?>*@{)}, (5,0);p+/v a(18) 3em/**@{.} ?>*@^{>}, (5,-1.5);p+/v a(18) 3em/**@{.} ?>*@^{<}, (5,-3);p+/v a(18) 3em/**@{.} ?>*@^{|}, (5,-4.5);p+/v a(18) 3em/**@{.} ?>*@^{(}, (5,-6);p+/v a(18) 3em/**@{.} ?>*@^{)}, (5,-7.5);p+/v a(18) 3em/**@{.} ?>*@^{`}, (5,-9);p+/v a(18) 3em/**@{.} ?>*@^{'}, (10,0);p+/v a(18) 3em/**@{.} ?>*@_{>}, (10,-1.5);p+/v a(18) 3em/**@{.} ?>*@_{<}, (10,-3);p+/v a(18) 3em/**@{.} ?>*@_{|}, (10,-4.5);p+/v a(18) 3em/**@{.} ?>*@_{(}, (10,-6);p+/v a(18) 3em/**@{.} ?>*@_{)}, (10,-7.5);p+/v a(18) 3em/**@{.} ?>*@_{`}, (10,-9);p+/v a(18) 3em/**@{.} ?>*@_{'}, (15,0);p+/v a(18) 3em/**@2{} ?>*@2{>} **@2{.}, (15,-1.5);p+/v a(18) 3em/**@2{} ?>*@2{<} **@2{.}, (15,-3);p+/v a(18) 3em/**@2{.} ?>*@2{|}, (20,0);p+/v a(18) 3em/**@3{} ?>*@3{>} **@3{.},, (20,-1.5);p+/v a(18) 3em/**@3{} ?>*@3{<} **@3{.},, (20,-3);p+/v a(18) 3em/**@3{.} ?>*@3{|}, (0,-13);p+/v a(18) 3em/**@{.} ?>*@{>>}, (0,-14.5);p+/v a(18) 3em/**@{.} ?>*@{<<}, (0,-16);p+/v a(18) 3em/**@{.} ?>*@{||}, (0,-17.5);p+/v a(18) 3em/**@{.} ?>*@{|-}, (0,-19);p+/v a(18) 3em/**@{.} ?>*@{>|}, (0,-20.5);p+/v a(18) 3em/**@{.} ?>*@{+}, (5,-13);p+/v a(18) 3em/**@{.} ?>*@^{>>}, (5,-14.5);p+/v a(18) 3em/**@{.} ?>*@^{<<}, (5,-16);p+/v a(18) 3em/**@{.} ?>*@^{||}, (5,-17.5);p+/v a(18) 3em/**@{.} ?>*@^{|-}, (5,-19);p+/v a(18) 3em/**@{.} ?>*@{>>|}, (5,-20.5);p+/v a(18) 3em/**@{.} ?>*@{x}, (10,-13);p+/v a(18) 3em/**@{.} ?>*@_{>>}, (10,-14.5);p+/v a(18) 3em/**@{.} ?>*@_{<<}, (10,-16);p+/v a(18) 3em/**@{.} ?>*@_{||}, (10,-17.5);p+/v a(18) 3em/**@{.} ?>*@_{|-}, (10,-19);p+/v a(18) 3em/**@{.} ?>*@{|<}, (10,-20.5);p+/v a(18) 3em/**@{.} ?>*@{/}, (15,-13);p+/v a(18) 3em/**@2{} ?>*@2{>>} **@2{.}, (15,-14.5);p+/v a(18) 3em/**@2{} ?>*@2{<<} **@2{.}, (15,-16);p+/v a(18) 3em/**@2{.} ?>*@2{||}, (15,-17.5);p+/v a(18) 3em/**@2{.} ?>*@2{|-}, (15,-19);p+/v a(18) 3em/**@{.} ?>*@{|<<}, (15,-20.5);p+/v a(18) 3em/**@{.} ?>*@{//}, (20,-13);p+/v a(18) 3em/**@3{} ?>*@3{>>} **@3{.}, (20,-14.5);p+/v a(18) 3em/**@3{} ?>*@3{<<} **@3{.}, (20,-16);p+/v a(18) 3em/**@3{.} ?>*@3{||}, (20,-17.5);p+/v a(18) 3em/**@3{.} ?>*@3{|-}, (20,-19);p+/v a(18) 3em/**@{.} ?>*@{*}, (20,-20.5);p+/v a(18) 3em/**@{.} ?>*@{o}, \end{xy} \] \[ \begin{xy} (0,0)*{ABC}="ob", <3em,2em>+"ob" *\cir{} \end{xy} \] \[ \begin{xy} @={(0,-10), (10,3), (20,-5)} @(, @+(0,-20), @+(15,3), @@{*{\otimes}}, s0="prev" @@{;"prev";**@{-}="prev"} @), s0="prev" @@{;"prev";**@{-}="prev"} \end{xy} \] \[ \begin{xy} @={(0,-10), (10,3), (20,-5)} @@{*{P}}, =@"stack", @i, @="stack", s0="prev" @@{;"prev";**@{-}="prev"} \end{xy} \] \[ \begin{xy} 0*={\times}, <1cm,.5cm>;<2cm,1.5cm>:<1cm,1cm>:: (0,0)*{o}, (0,0);(1,0) **@{-} ?>*@{>}, (0,0);(0,1) **@{-} ?>*@{>}, (0,0);(1,1) **@{.} ?>*@{>}, \end{xy} \] \[ \begin{xy} 0;<1em,0em>: (0,0)*\cir<0.5em>{}, (0,-2)*\cir<0.5em>{l^l}, +/r2em/*\cir<0.5em>{l^r}, +/r2em/*\cir<0.5em>{l^d}, +/r2em/*\cir<0.5em>{l^u}, +/r2em/*\cir<0.5em>{l^dl}, +/r2em/*\cir<0.5em>{l^dr}, +/r2em/*\cir<0.5em>{l^ul}, +/r2em/*\cir<0.5em>{l^ur}, (0,-4)*\cir<0.5em>{l_l}, +/r2em/*\cir<0.5em>{l_r}, +/r2em/*\cir<0.5em>{l_d}, +/r2em/*\cir<0.5em>{l_u}, +/r2em/*\cir<0.5em>{l_dl}, +/r2em/*\cir<0.5em>{l_dr}, +/r2em/*\cir<0.5em>{l_ul}, +/r2em/*\cir<0.5em>{l_ur}, \end{xy} \] \[ \begin{xy} (0,0)*[o]{A}="A"; p+/r5pc/+/u3pc/*{B}="B", p-<.5pc,2pc>*{C}="C", p+<6pc,-.5pc>*{D}="D", "A";"B"**\crv{<4pc,-2pc>} ?>*@{>}, ?!{"C";"D"**@{-}}="E"*{\times}, "E"+/_2pc/="F";"E"**@{-}, ?!{"C";"D"}*{\otimes} \end{xy} \begin{xy} (0,0)*{A}="A"; p+/r5pc/+/u3pc/*{B}="B", p-<.5pc,2pc>*{C}="C", p+<6pc,-.5pc>*{D}="D", "A";"B"**\crv{<4pc,-1pc>} ?>*@{>}, ?!{"C";"D"**\crv{<1pc,-0.5pc>}}="E"*{\times}, "E"+/_3pc/="F";"E"**@{}, ?!{"C";"D"**\crv{~**@{} <1pc,-0.5pc>}}="G"*{\times}, "E";"G"**@{.} \end{xy} \] \[ \begin{xy} 0;<1em,0em>: (0,0)*+[o]{x}="x", (8,0)*+{f(x)}="fx", "x";"fx" **\crv{(4,2)} ?>*@{>} ?<>*!/_.5em/{\scriptstyle f}, "x";"fx" **\crv{(4,-2)} ?<*@{<} ?<>*!/^.5em/{\scriptstyle f^{-1}}, "x";"x" **\crv{(-3,3)&(-3,-3)} ?>*@{>} ?<>(.5)*!/^0.5em/{\scriptstyle id} \end{xy} \] \[ \begin{xy} (0,0)*={+}="+"; (6,3)*={\times}="*" **@{.}, (3,0)*{A}; (6,6)*{B} **@{-} ?!{"+";"*"} *{\oplus} \end{xy} \begin{xy} (0,0)*{A}="A"; p+/r5pc/+/u3pc/*{B}="B", p+<1pc,3pc>*{C}="C", p+<4pc,-1pc>*{D}="D", "D";"C"**\crv{<3pc,2pc>} ?>*@{>}, ?!{"A";"B"**@{-}}*{\oplus} \end{xy} \begin{xy} (0,0)*{A}="A"; p+/r5pc/+/u3pc/*{B}="B", p+<1pc,3pc>*{C}="C", p+<4pc,-1pc>*{D}="D", "A";"B"**@{-}, ?!{"D";"C"**\crv{<3pc,2pc>} ?>*@{>}}*{\oplus} \end{xy} \begin{xy} (0,0)*{A}="A"; p+/r5pc/+/u3pc/*{B}="B", p+<1pc,3pc>*{C}="C", p+<4pc,-1pc>*{D}="D", "A";"B"**\crv{<2pc,3pc>&<3pc,-2pc>}, ?!{"D";"C"**\crv{<3pc,2pc>} ?>*@{>}}*{\oplus} \end{xy} \begin{xy} (0,0)*{A}="A"; p+/r5pc/+/u3pc/*{B}="B", p-<.5pc,2pc>*{C}="C", p+<6pc,-.5pc>*{D}="D", "A";"B"**\crv{<4pc,-2pc>} ?>*@{>}, ?!{"C";"D"**@{-}}="E"*{\times}, +/_2pc/="F";"E"**@{.}, ?!{"C";"D"}*{\otimes} \end{xy} \begin{xy} (0,0)*{A}="A"; p+/r5pc/+/u3pc/*{B}="B", p-<.5pc,2pc>*{C}="C", p+<6pc,-.5pc>*{D}="D", "A";"B"**\crv{<6pc,-5pc>} ?>*@{>}, ?!{"C";"D"**@{-}}*{\otimes} \end{xy} \] \[ \begin{xy} (0,0)*{}ABC} \end{xy} \] \[ \begin{xy} <0em,20mm>*{ABC}="A";<60mm,0em>*{XYZ}="B" ** {\heartsuit}, <10mm,-20mm>*{あいう}="C";"A" ** @3{>}, "B";"C" **\crv{~*{.} ~**@{|} <60mm,-20mm>} \end{xy} \] \[ \begin{xy} 0;<1em,0em>: (8, 5) * {ABC} = "A", (3, 10) * {X \otimes Y}="B", <60mm, 55mm> *[o] {\displaystyle \int_0^\infty e^{-x^2/2} dx}*\frm{.e}="C", "A";"B" ** \dir{-} ?<>/-1mm/ *\dir{>} ?<>/1mm/ *@{>}, "B";"C" ** @{} ?<*@3{<}; ?>*@3{>} **@3{-} ?(0.5)*!/rd 3mm/{\scriptstyle \eta} ?(0.5)*!/^ 3.5mm/{\scriptstyle \phi} ?<>, "C";"A" ** @{-} ?>*\dir{>} ?< *\dir{|}, "C";"A", x="X", "A";"B", y="Y", "X";"Y" **@3{~} ?<*!/_ 3mm/{x} ?>*!/_ 3mm/{y} \end{xy} \] \[ \begin{xy} <0em,0em>="A";<10cm,0em>="B", "A";"B" **\crv{<2cm,2cm>&<2cm,-3cm>&<5cm,1cm>&<7cm,0em>} ?>*@{|} ?>/-1cm/*@{|} ?>/-2cm/*@{|} ?>/-3cm/*@{|} ?>/-4cm/*@{|} ?>/-5cm/*@{|} ?>/-6cm/*@{|} ?>/-7cm/*@{|} ?>/-8cm/*@{|} ?>/-9cm/*@{|} ?>/-10cm/*@{|} \end{xy} \] \[ \begin{xy} <0em,20mm>*{A}="A";<60mm,0em>*{B}="B", **\crv{<10mm,20mm>&<30mm,20mm>&<50mm,-20mm>&<60mm,-10mm>} ?<*\dir{<} ?>*\dir{>} ?(.6)*{\oplus} *!LD!/^-5pt/{x} ?(.6)/12pt/*{\oplus} *!LD!/^-5pt/{x'} ?(.35)*{\otimes}-/25pt/*{Q}="q" +/50pt/*{P};"q" **\dir{-} \end{xy} \] \[ \begin{xy} <0cm,2cm>*+[o]{ABC}*\frm{e}="A";<6cm,0cm>*+{DEF}="B"*\frm{-}, "A";"B" **\crv{~**@{-}} ?>/-7mm/*@{|} ?<>*@{|} ?>*@{>}, "A";"B" **\crv{~**@{-} <3cm,3cm>} ?>/-7mm/*@{|} ?<>*@{|} ?>*@{>}, "A";"B" **\crv{~**@{-} <2cm,4cm>&<4cm,4cm>} ?>/-7mm/*@{|} ?<>*@{|} ?>*@{>}, "A";"B" **\crv{~**@{-} <1cm,2cm>&<3cm,2cm>&<5cm,-2cm>&<6cm,-1cm>} ?>/-7mm/*@{|} ?<>*@{|} ?>*@{>} \end{xy} \] \[ \begin{xy} <0cm,2cm>*{A}="A";<6cm,0cm>*{B}="B" **\crv{~**@3{.} <10cm,3cm>&<-4cm,4cm>} \end{xy} \] \[ \begin{xy} <0cm,0cm>*{A}="A";<-1cm,5cm>*{B}="B" **\crv{<1cm,1cm>&<0cm,2cm>&<1.5cm,4cm>} **\crv{<-2cm,1cm>&<-1.5cm,4cm>}, \end{xy} \] \[ \begin{xy} 0;<1em,0em>: (1,1);p+/v a(18) 5.5em/**@{-}, (1,3);p+/v a(18) 5.5em/**@2{-}, (1,5);p+/v a(18) 5.5em/**@3{-}, (1,7);p+/v a(18) 5.5em/**@{=}, (1,9);p+/v a(18) 5.5em/**@{.}, (1,11);p+/v a(18) 5.5em/**@2{.}, (1,13);p+/v a(18) 5.5em/**@3{..}, (1,15);p+/v a(18) 5.5em/**@{::}, (8,1);p+/v a(18) 5.5em/**@{--}, (8,3);p+/v a(18) 5.5em/**@2{--}, (8,5);p+/v a(18) 5.5em/**@3{--}, (8,7);p+/v a(18) 5.5em/**@{==}, (8,9);p+/v a(18) 5.5em/**@{~}, (8,11);p+/v a(18) 5.5em/**@2{~}, (8,13);p+/v a(18) 5.5em/**@3{~}, (15,1);p+/v a(18) 5.5em/**@{~~}, (15,3);p+/v a(18) 5.5em/**@2{~~}, (15,5);p+/v a(18) 5.5em/**@3{~~}, \end{xy} \] \[ \begin{xy} <0em,0em>*+<6em>{}="1", "1"+/ul 2.5em/ *+<.5em>{3} *\cir{}="ul" *!/dr 1em/{\scriptstyle 1}, "1"+/dl 2.5em/ *+<.5em>{3} *\cir{}="dl" *!/ur 1em/{\scriptstyle 1'}, "1"+/dr 2.5em/ *+<.5em>{1} *\cir{}="dr" *!/ul 1em/{\scriptstyle 2'}, "1"+/ur 2.5em/ *+<.5em>{1} *\cir{}="ur" *!/dl 1em/{\scriptstyle 2}, "ul";"ur" **@{-} ?>*@{>} ?<>(.5)*!/d.5em/{3}, "ul";"dl" **@{-} ?>*@{>} ?<>(.5)*!/r.5em/{3}, "ur";"dr" **@{-} ?>*@{>} ?<>(.5)*!/l.5em/{1}, <9em,0em>*+<6em>{}="2", "2"+/ul 2.5em/ *+<.5em>{3} *\cir{}="ul", "2"+/dl 2.5em/ *+<.5em>{3} *\cir{}="dl", "2"+/dr 2.5em/ *+<.5em>{1} *\cir{}="dr", "2"+/ur 2.5em/ *+<.5em>{1} *\cir{}="ur", "ul";"dl" **@{-} ?>*@{>} ?<>(.5)*!/r.5em/{3}, "ur";"ul" **@{-} ?>*@{>} ?<>(.5)*!/d.5em/{3}, "dr";"ur" **@{-} ?>*@{>} ?<>(.5)*!/l.5em/{1}, "ul";"dr" **@{-} ?>*@{>} ?<>(.5)*!/l.5em/{3}, <18em,0em>*+<6em>{}="3", "3"+/ul 2.5em/ *+<.5em>{3} *\cir{}="ul", "3"+/dl 2.5em/ *+<.5em>{3} *\cir{}="dl", "3"+/dr 2.5em/ *+<.5em>{1} *\cir{}="dr", "3"+/ur 2.5em/ *+<.5em>{1} *\cir{}="ur", "dl";"ul" **@{-} ?>*@{>} ?<>(.5)*!/r.5em/{3}, "ul";"ur" **@{-} ?>*@{>} ?<>(.5)*!/d.5em/{3}, "ur";"dr" **@{-} ?>*@{>} ?<>(.5)*!/l.5em/{2}, "ur";"dl" **@{-} ?>*@{>} ?<>(.75)*!/_.5em/{3}, "dr";"ul" **@{-} ?>*@{>} ?<>(.75)*!/^.5em/{3}, <18em,-9em>*+<6em>{}="4", "4"+/ul 2.5em/ *+<.5em>{3} *\cir{}="ul", "4"+/dl 2.5em/ *+<.5em>{3} *\cir{}="dl", "4"+/dr 2.5em/ *+<.5em>{1} *\cir{}="dr", "4"+/ur 2.5em/ *+<.5em>{1} *\cir{}="ur", "ul";"dl" **@{-} ?>*@{>} ?<>(.5)*!/r.5em/{6}, "ul";"dr" **@{-} ?>*@{>} ?<>(.75)*!/^.5em/{3}, "ur";"ul" **@{-} ?>*@{>} ?<>(.5)*!/d.5em/{3}, "dl";"ur" **@{-} ?>*@{>} ?<>(.75)*!/^.5em/{3}, "dr";"ur" **@{-} ?>*@{>} ?<>(.5)*!/l.5em/{2}, <18em,-18em>*+<6em>{}="5", "5"+/ul 2.5em/ *+<.5em>{3} *\cir{}="ul", "5"+/dl 2.5em/ *+<.5em>{3} *\cir{}="dl", "5"+/dr 2.5em/ *+<.5em>{1} *\cir{}="dr", "5"+/ur 2.5em/ *+<.5em>{1} *\cir{}="ur", "dl";"ul" **@{-} ?>*@{>} ?<>(.5)*!/r.5em/{6}, "ul";"ur" **@{-} ?>*@{>} ?<>(.5)*!/d.5em/{3}, "ur";"dr" **@{-} ?>*@{>} ?<>(.5)*!/l.5em/{1}, "dr";"ul" **@{-} ?>*@{>} ?<>(.75)*!/^.5em/{3}, "ur";"dl" **@{-} ?>*@{>} ?<>(.75)*!/_.5em/{3}, <9em,-18em>*+<6em>{}="6", "6"+/ul 2.5em/ *+<.5em>{3} *\cir{}="ul", "6"+/dl 2.5em/ *+<.5em>{3} *\cir{}="dl", "6"+/dr 2.5em/ *+<.5em>{1} *\cir{}="dr", "6"+/ur 2.5em/ *+<.5em>{1} *\cir{}="ur", "ul";"dl" **@{-} ?>*@{>} ?<>(.5)*!/r.5em/{3}, "ur";"ul" **@{-} ?>*@{>} ?<>(.5)*!/d.5em/{3}, "dl";"ur" **@{-} ?>*@{>} ?<>(.5)*!/^.5em/{3}, "dr";"ur" **@{-} ?>*@{>} ?<>(.5)*!/l.5em/{1}, <0em,-18em>*+<6em>{}="7", "7"+/ul 2.5em/ *+<.5em>{3} *\cir{}="ul", "7"+/dl 2.5em/ *+<.5em>{3} *\cir{}="dl", "7"+/dr 2.5em/ *+<.5em>{1} *\cir{}="dr", "7"+/ur 2.5em/ *+<.5em>{1} *\cir{}="ur", "dl";"ul" **@{-} ?>*@{>} ?<>(.5)*!/r.5em/{3}, "ul";"ur" **@{-} ?>*@{>} ?<>(.5)*!/d.5em/{3}, "dr";"ur" **@{-} ?>*@{>} ?<>(.5)*!/l.5em/{1}, <0em,-9em>*+<6em>{}="8", "8"+/ul 2.5em/ *+<.5em>{3} *\cir{}="ul", "8"+/dl 2.5em/ *+<.5em>{3} *\cir{}="dl", "8"+/dr 2.5em/ *+<.5em>{1} *\cir{}="dr", "8"+/ur 2.5em/ *+<.5em>{1} *\cir{}="ur", "dl";"ul" **@{-} ?>*@{>} ?<>(.5)*!/r.5em/{3}, "ur";"ul" **@{-} ?>*@{>} ?<>(.5)*!/d.5em/{3}, "ur";"dr" **@{-} ?>*@{>} ?<>(.5)*!/l.5em/{1}, "1";"2" **@{-} ?>*@{>} ?<>(.5)*!/d.5em/{2}, "2";"3" **@{-} ?>*@{>} ?<>(.5)*!/d.5em/{1}, "3";"4" **@{-} ?>*@{>} ?<>(.5)*!/l.5em/{2}, "4";"5" **@{-} ?>*@{>} ?<>(.5)*!/l.5em/{1}, "5";"6" **@{-} ?>*@{>} ?<>(.5)*!/d.5em/{2}, "6";"7" **@{-} ?>*@{>} ?<>(.5)*!/d.5em/{1}, "1";"8" **@{-} ?>*@{>} ?<>(.5)*!/r.5em/{1}, "8";"7" **@{-} ?>*@{>} ?<>(.5)*!/r.5em/{2}, \end{xy} \] \[ \begin{xy} *={\bullet} \PATH ~={**@{-}} ~>{|>*@{>}} ~+{|*@{/}} '(10,1)*={\bullet} <3pt> '(20,-2)*={\bullet} (30,0)*={\bullet} \end{xy} \] \[ \begin{xy} \end{xy} \]