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What is mrcal for?

mrcal is a generic toolkit, applicable to anything that makes or
uses camera models.

Common applications:

▶ Calibration
▶ Triangulation
▶ Photogrammetry
▶ SFM



Why does mrcal exist?

I couldn’t find a set of tools precise-enough to make my visual
ranging work possible, so I wrote my own

By necessity, mrcal is a complete re-design and re-implementation
of camera modeling tooling from the ground-up:

▶ Richer camera model available to precisely model lens behavior
▶ Uncertainty propagation and cross-validation techniques

available to validate a calibration
▶ No implicit pinhole assumption anywhere (no homogeneous

coordinates, essential, fundamental matrices, etc)
▶ Fisheye-friendly stereo rectification



Computing details

▶ mrcal is a library (C and Python)
▶ Many commandline tools available, so no coding required for

common tasks
▶ Thoroughly documented
▶ Open-source, available in stock Debian

Contributions welcome!



Where is it?

Detailed documentation is available at
http://mrcal.secretsauce.net/

▶ This talk is a repackaging of the documentation on that page
▶ See the docs for more detail, and for links to all the data and

commands that produced the presented results

http://mrcal.secretsauce.net/


Demo calibration

Let’s start by looking at the "tour of mrcal":
http://mrcal.secretsauce.net/tour.html

We follow a real-world data flow, starting with chessboard
observations. Images captured using

▶ Sony Alpha 7 III full-frame SLR. 6000x3376 imager
▶ Very wide lens: Samyang 12mm F2.8 fisheye. 180deg field of

view corner-corner
▶ Just one camera (in this demo; mrcal supports multiple

cameras)
▶ Outdoor images captured in downtown Los Angeles

http://mrcal.secretsauce.net/tour.html


Sample image of the scene



Gathering and detecting chessboard corners

We capture images, and use mrgingham to detect chessboard
corners. For an arbitrary image:

https://github.com/dkogan/mrgingham/


Let’s run a calibration!

This is a wide lens, so we need a lens model that can handle it.
Let’s use the 8-parameter OpenCV model: LENSMODEL_OPENCV8

$ mrcal-calibrate-cameras --lensmodel LENSMODEL_OPENCV8 ...
...

RMS reprojection error: 0.4 pixels
Worst residual (by measurement): 1.8 pixels
Noutliers: 564 out of 16464 total points: 3.4% of the data
calobject_warp = [-0.00012726 -0.00014325]



Why is the reprojection error > 0?

We have two sources of error:

▶ Sampling error: chessboard observations are noisy. We can
study this, but we cannot reduce it

▶ Model error: our model of the lens behavior, chessboard shape
and everything else isn’t perfect. We can and must suppress
this as much as possible

We want the model error to be negligible. If it is and if the
sampling error is normal and i.i.d., then we get a bias-free
maximum-likelihood calibration result

Patterns in the residuals indicate the presence of model errors



LENSMODEL_OPENCV8 residuals histogram
What does the error distribution look like?
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LENSMODEL_OPENCV8: the worst image



LENSMODEL_OPENCV8: residual directions
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LENSMODEL_OPENCV8: conclusions

We see clear patterns in the residuals, so

▶ LENSMODEL_OPENCV8 does not fit our data

Let’s fix it.



Doing it again with LENSMODEL_SPLINED_STEREOGRAPHIC
Let’s re-process the same calibration data using the splined model.
We run the same command as before, but using the
LENSMODEL_SPLINED_STEREOGRAPHIC_ . . .
order=3_Nx=30_Ny=18_fov_x_deg=150 model. This is one long
string.

This model has 1084 parameters.

$ mrcal-calibrate-cameras
--lensmodel LENSMODEL_SPLINED_STEREOGRAPHIC_ ...
... order=3_Nx=30_Ny=18_fov_x_deg=150 ...

...
RMS reprojection error: 0.2 pixels
Worst residual (by measurement): 1.3 pixels
Noutliers: 28 out of 16464 total points: 0.2% of the data
calobject_warp = [-1.26851438e-04 -8.03269701e-05]



LENSMODEL_OPENCV8 residuals histogram
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LENSMODEL_SPLINED_... residuals histogram
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LENSMODEL_OPENCV8: the worst image



LENSMODEL_SPLINED_...: the worst image



LENSMODEL_OPENCV8: residual directions
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LENSMODEL_SPLINED_...: residual directions
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Conclusion

We have good evidence that
LENSMODEL_SPLINED_STEREOGRAPHIC fits this lens much better
than LENSMODEL_OPENCV8



Differencing

We computed the calibration two different ways. How different are
the two models?



Differencing

0.50.5

0.50.5

0.50.5

0.50.5

0.50.5 0.50.5

0.50.5

0.50.5

0.50.50.50.5
0.50.5

0.50.5

0.50.5

0.50.5
0.50.5

0.50.5

0.50.5

0.50.5

0.50.5

0.50.5

0.50.5 1111

11

11

11

11

11
11

11

11

11

11

11
11 11

1.51.5

1.51.5

1.51.5
1.51.5

1.51.5

1.51.5
1.51.5

1.51.5

1.51.5

1.51.5

1.51.5

1.51.5

1.51.5

1.51.5

1.51.5

1.51.5
1.51.5

22

22

22

22

22

2222

22

22

22

22

2.52.5

2.52.5

2.52.5
2.52.52.52.5

2.52.5

2.52.5

2.52.5

2.52.5 33
33

33

33

33

33

33

33

33

33 3.53.5
3.53.5 3.53.5

3.53.5

3.53.5

3.53.5

3.53.5

3.53.5

3.53.5

3.53.5 44
44

4444

44

44

44

44

44

44

44

 0  1000  2000  3000  4000  5000  6000

 0

 500

 1000

 1500

 2000

 2500

 3000

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Diff looking at 2 models, computing extrinsics transform at infinity



Uncertainty

▶ All calibrations are based on observations of the calibration
object (chessboard corners)

▶ These observations always contain some noise (sampling error)
▶ A calibration result is trustworthy only if it is insensitive to

this noise

We quantify this sensitivity by computing a projection uncertainty



Uncertainty from the DTLA data

Computing the uncertainty map from the earlier
LENSMODEL_OPENCV8 calibration:
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Uncertainty from the DTLA data

And from the LENSMODEL_SPLINED_STEREOGRAPHIC_...
calibration:
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Ranging note

Let’s revisit an important detail I glossed-over when talking about
differencing and uncertainties. Both computations begin with
p⃗ = unproject (q⃗)

But an unprojection is ambiguous in range, so diffs and
uncertainties are defined as a function of range

Each point projects to the same pixel

But the uncertainty of that
projection varies with range

All the uncertainties reported so far were at ∞



The uncertainty figure
The uncertainty of our LENSMODEL_OPENCV8 calibration at the
center as a function of range:
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Let’s apply these techniques

We described several analysis techniques:

▶ Visualizing the solve residuals
▶ Computing projection differences between two models
▶ Evaluating projection uncertainty

Let’s use these to answer practical questions



Optimal choreography overview

For many of the following analyses we study the effects of
sampling error. We

▶ Set up a simulated world with some baseline geometry
▶ Scan some parameter
▶ Calibrate
▶ Look at the uncertainty-vs-range plots as a function of that

parameter



How dense should our chessboard be?

 0

 2

 4

 6

 8

 10

 0  5  10  15  20  25  30

E
x
p
e
ct

e
d
 w

o
rs

t-
d
ir

e
ct

io
n
 u

n
ce

rt
a
in

ty
 (

p
ix

e
ls

)

Range (m)

Number of chessboard points per side = 5
Number of chessboard points per side = 8

Number of chessboard points per side = 12
Number of chessboard points per side = 15
Number of chessboard points per side = 19
Number of chessboard points per side = 22
Number of chessboard points per side = 26
Number of chessboard points per side = 30

Scanning the calibration object density, keeping the board size constant. Have 1 cameras looking at 100 boards at 2.00m



What should the chessboard corner spacing be?
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Do we want tiny boards nearby or giant boards faraway?
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How far should the chessboards be placed?
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How many chessboard observations should we get?
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What kind of calibration object do we want? Guidelines

▶ More data is good
▶ More chessboard corners
▶ More chessboard observations

▶ The chessboard should fill the imager
▶ Close-ups
▶ Big chessboards

Questions:

▶ So what kind of calibration object do we want? Are
chessboards the right choice?

▶ Should we place the chessboard immediately in front of the
lens? Should we use a giant chessboard?



Chessboards? Circles? AprilTags? Charuco?

mrcal doesn’t care!

▶ Grids of circles (and possibly AprilTags) don’t directly observe
the point, so they could be biased. mrcal has a visual
validation tool: mrcal-reproject-to-chessboard that
produces a validation sequence

▶ Anything with AprilTags needs a high-resolution-enough
image to resolve the AprilTag. This resolution could instead
be used to cram extra chessboard squares into the image

I use chessboards with the mrgingham detector

file:///home/dima/projects/mrcal/doc/out/external/figures/reprojected-to-chessboard/reprojected-to-chessboard.mp4


The downsides of extreme closeups

Corners out of focus
▶ If the blur is unbiased and gaussian: this will increase the

noise, but we can compensate by gathering more data
▶ It looks like the blur mostly is unbiased and gaussian, but

don’t push it

Noncentral effects become significant
Core assumption of almost all camera modeling and processing:
▶ All rays of light intersect at a single point

This is not a valid assumption near the lens



Noncentrality
The size of the glass in the lens becomes non-negligible as we
observe nearby objects

all intersect at the same point
Far−away rays effectively

all intersect at the same point
Close−up rays do NOT

∆z



Noncentrality

▶ Most triangulation and stereo routines assume a central
projection. This is true for non-closeups

▶ If necessary, noncentral behavior can be modeled:
▶ mrcal has partial support, which was critically important for

some projects
▶ CAHVORE is noncentral with most people throwing away the

noncentrality when they use it
▶ We should try to calibrate and use the cameras beyond where

noncentral effects are significant. mrcal cross-validation will
tell you if you’re too close.



The downsides of huge chessboards

▶ Difficult to manufacture
▶ Expensive
▶ Unstable

mrcal has a simple static deformation model: a parabolic
deformation in x and in y. Usually this isn’t enough to accurately
represent foam boards



The downsides of huge chessboards
Because intrinsics are sensitive to chessboard shape errors.
Simulated intrinsics calibration error due to a board shape error of
1mm in the center in one direction, and 0.5mm in the center in the
other direction. No other noise present.
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Projection error due to a dynamic chessboard shape error



The downsides of huge chessboards

I usually use an Aluminum-honeycomb-backed 1m x 1m square
board. This works well.



What kind of calibration object do we want? Conclusions

▶ Chessboard as large as possible
▶ Placed as close to the camera as possible
▶ With as dense a chessboard grid as possible

Using the mrcal tools to verify that we didn’t go too far



How should we dance? Conclusions

Good

Best

Bad

Best

Use mrcal tools to validate



Which model should we use for the lenses?

Today mrcal supports

▶ OpenCV models with 4,5,8,12 parameters
▶ CAHVOR, CAHVORE
▶ LENSMODEL_SPLINED_STEREOGRAPHIC: the rich, splined

model

Unless you really need compatibility with a legacy system or you
have low accuracy requirements,
LENSMODEL_SPLINED_STEREOGRAPHIC is strongly recommended.



Interpreting the calibration results

Once we have a calibration, we should see how well we did:

▶ We examine the projection uncertainty to make sure we have
enough good data in the right places

▶ We examine the cross-validation diffs to confirm that the
model fits

▶ If these diffs are too high, we examine the residuals to find the
cause of our model errors



Projection uncertainty

▶ Projection uncertainty gauges the effect of sampling error
▶ This is directly affected by the quality of the data we gathered.

Problems with the chessboard dance will show up here
▶ Lean lens models (anothing other than

LENSMODEL_SPLINED_STEREOGRAPHIC) will produce an
overly-optimistic uncertainty report

▶ A low projection uncertainty is a necessary, but not sufficient
condition for a good calibration: uncertainty reporting
samples the input pixel noise, but not the model noise

If the uncertainty is unacceptable, stop there, and fix that first.



DTLA projection uncertainty: OPENCV8
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DTLA projection uncertainty: splined model
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Cross-validation diffs

Now we look for model errors

▶ We split our input dataset, and process the subsets
independently: this samples the model error

▶ We use the differencing method to compare the projection
behaviors

▶ Unlike the uncertainty reporting, interpreting these requires
some thought



Cross-validation diffs: detecting model errors

I want to see

Euncertainty0 + Euncertainty1 ≈ Ecrossvalidation

Let’s look at the downtown LA data. We want to see a
cross-validation diff of ~ 0.2 pixels.



DTLA cross-validation diffs: OPENCV8
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Cross-validation for LENSMODEL_OPENCV8



DTLA cross-validation diffs: splined model
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Cross-validation for LENSMODEL_SPLINED_STEREOGRAPHIC



DTLA cross-validation diffs

▶ Clearly the LENSMODEL_OPENCV8 result has issues
▶ But the LENSMODEL_SPLINED_STEREOGRAPHIC result has

too-high errors too

Because I captured images from too close to the lens, and we’re
seeing non-negligible noncentral behavior. Asking mrcal to model
that behavior produces:



DTLA cross-validation diffs: splined model, noncentral
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Cross-validation for LENSMODEL_SPLINED_STEREOGRAPHIC, noncentral



DTLA cross-validation diffs

▶ If this calibration was important, I would get a different
dataset from further out



DTLA cross-validation diffs

▶ Here the cross-validation diffs alerted us to the presense of a
problem. They are very good at that

▶ Finding the cause of the problem requires some intuition and
experimentation



Residuals

▶ One technique is available to help diagnose problems:
examining the solve residuals



Residuals

We usually have a lot of images and a lot of residuals. I look at
the few worst-fitting images. Usually I only look at the residuals if

▶ I’m calibrating an unfamiliar system
▶ I don’t trust something about the way the data was collected
▶ Something unknown is causing issues (we’re seeing too-high

cross-validation diffs), and we need to debug

Model errors are indicated with noise that is correlated or
heteroscedastic, so we look for patterns in the residuals.

Let’s examine the residuals we get from common problems



Residuals: poorly-fitting lens model

We saw this in the downtown Los Angeles data

▶ We looked at both the LENSMODEL_OPENCV8 and
LENSMODEL_SPLINED_STEREOGRAPHIC residuals

▶ The latter was much better, but still showed patterns

Earlier residual plots follow below



Residuals: LENSMODEL_OPENCV8: the worst image



Residuals: LENSMODEL_OPENCV8: residual directions
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Residuals: rolling shutter

Some cameras save money on memory by sending pixel data as it
is captured. The result: rolling shutter cameras capture different
parts of the image at different times.

This produces funky residuals



Residuals: rolling shutter
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Residuals: rolling shutter
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Residuals: rolling shutter
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Residuals: syncronization errors

▶ In a multi-camera calibration we assume that sets of images
were captured at the same instant in time

▶ This requires a shared physical wire that each camera uses to
initiate image capture

If this doesn’t work right we get the tell-tale residuals, and we can
examine the solution to find the smoking-gun images that prove
the breakage



Residuals: syncronization errors
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Residuals: syncronization errors
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Residuals: chessboard shape errors

▶ Errors in chessboard shape are difficult to disentangle from
errors in intrinsics

▶ We can have static and dynamic shape errors:
1. The chessboard is non-flat, but in a way not modeled by the

solver
2. The chessboard shape changes over the course of the

chessboard dance



Residuals: errors due to unstable chessboard shape
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Residuals: chessboard shape errors. Conclusions

▶ These are hard to conclusively pick out from residual plots
▶ It’s helpful to look at more than just 1 or 2 worst-case images
▶ The most tilted chessboard observations usually show very

consistent residual vectors along the far edge of the
chessboard



Perfectly-corrupted solves
mrcal can report the errors from a solve containing only one kind
of hypothetical error. This measures the effect of problems we
think may exist

A board shape error of 1mm in the center in one direction, and
0.5mm in the center in the other direction does this:
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Camera stability

Let’s switch gears, and look at some applications

Let’s use the differencing method to gauge stability of intrinsics:

▶ If we stress a camera system (mechanically, thermally, etc),
does its behavior change?



Lens stability

As a baseline, once again here’s the cross-validation diff from the
downtown Los Angeles dataset. This is the difference between two
subsequent solves without touching anything
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Lens stability

▶ Then I moved the camera and tripod over by 2m or so, and
gathered more chessboard images. Comparison from before:
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Estimating ranging errors caused by calibration errors

▶ Projection errors aren’t what we ultimately care about
▶ mrcal allows us to propagate these to what we care about

Propagating errors to triangulation:
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Scene-aware error propagation

If the rough geometry of an observed scene is known beforehand,
we can make a rough expected-error map:

1. Compute ∂range
∂azimuth from the triangulation expression

2. Estimate ∆azimuth by combining expected sampling error
and calibration error

3. ∆range ≈ ∂range
∂azimuth∆azimuth



Scene-aware error propagation

In the downtown Los Angeles scene we observed this calibration
error using LENSMODEL_OPENCV8:
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Scene-aware error propagation

▶ Rough median of calibration error: 0.5 pixels per camera
▶ At worst: 1.0 pixels of calibration error
▶ Noise in stereo matching is ~ 0.3 pixels

So we assume a disparity error of 1.0 + 0.3 = 1.3 pixels



Scene-aware error propagation: left-rectified image



Scene-aware error propagation: disparity
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Scene-aware error propagation: propagated range error
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Scene-aware error propagation

These errors are correlated and will not average out. They should
be minimized.



Conclusion

▶ mrcal solves many pervasive issues in traditional
camera-modeling toolkits

▶ Allows many practical questions to be addressed directly
▶ Many improvements and extensions and applications planned

and in development


	Overview
	Tour of mrcal
	Tour of mrcal: LENSMODEL_OPENCV8
	Tour of mrcal: LENSMODEL_SPLINED_STEREOGRAPHIC
	Differencing
	Uncertainty
	Ranging note
	Let's apply these techniques
	What kind of calibration object do we want?
	How should we dance?
	Which model should we use for the lenses?
	Results interpretation
	Uncertainty
	Cross-validation
	Residuals
	Recipes
	Model evaluation
	Conclusion

