
Making and using camera models with mrcal: the
practical details

Dima Kogan

June 13, 2023

What is mrcal for?

mrcal is a generic toolkit, applicable to anything that makes or
uses camera models.

Common applications:

▶ Calibration
▶ Triangulation
▶ Photogrammetry
▶ SFM

Why does mrcal exist?

I couldn’t find a set of tools precise-enough to make my visual
ranging work possible, so I wrote my own

By necessity, mrcal is a complete re-design and re-implementation
of camera modeling tooling from the ground-up:

▶ Richer camera model available to precisely model lens behavior
▶ Uncertainty propagation and cross-validation techniques

available to validate a calibration
▶ No implicit pinhole assumption anywhere (no homogeneous

coordinates, essential, fundamental matrices, etc)
▶ Fisheye-friendly stereo rectification

Computing details

▶ mrcal is a library (C and Python)
▶ Many commandline tools available, so no coding required for

common tasks
▶ Thoroughly documented
▶ Open-source, available in stock Debian

Contributions welcome!

Where is it?

Detailed documentation is available at
http://mrcal.secretsauce.net/

▶ This talk is a repackaging of the documentation on that page
▶ See the docs for more detail, and for links to all the data and

commands that produced the presented results

http://mrcal.secretsauce.net/

Demo calibration

Let’s start by looking at the "tour of mrcal":
http://mrcal.secretsauce.net/tour.html

We follow a real-world data flow, starting with chessboard
observations. Images captured using

▶ Sony Alpha 7 III full-frame SLR. 6000x3376 imager
▶ Very wide lens: Samyang 12mm F2.8 fisheye. 180deg field of

view corner-corner
▶ Just one camera (in this demo; mrcal supports multiple

cameras)
▶ Outdoor images captured in downtown Los Angeles

http://mrcal.secretsauce.net/tour.html

Sample image of the scene

Gathering and detecting chessboard corners

We capture images, and use mrgingham to detect chessboard
corners. For an arbitrary image:

https://github.com/dkogan/mrgingham/

Let’s run a calibration!

This is a wide lens, so we need a lens model that can handle it.
Let’s use the 8-parameter OpenCV model: LENSMODEL_OPENCV8

$ mrcal-calibrate-cameras --lensmodel LENSMODEL_OPENCV8 ...
...

RMS reprojection error: 0.4 pixels
Worst residual (by measurement): 1.8 pixels
Noutliers: 564 out of 16464 total points: 3.4% of the data
calobject_warp = [-0.00012726 -0.00014325]

Why is the reprojection error > 0?

We have two sources of error:

▶ Sampling error: chessboard observations are noisy. We can
study this, but we cannot reduce it

▶ Model error: our model of the lens behavior, chessboard shape
and everything else isn’t perfect. We can and must suppress
this as much as possible

We want the model error to be negligible. If it is and if the
sampling error is normal and i.i.d., then we get a bias-free
maximum-likelihood calibration result

Patterns in the residuals indicate the presence of model errors

LENSMODEL_OPENCV8 residuals histogram
What does the error distribution look like?

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

O
b
se

rv
e
d
 f

re
q
u
e
n
cy

Residuals (pixels). x and y components of error are counted separately

Distribution of fitted residuals and a gaussian fit for all the cameras

LENSMODEL_OPENCV8: the worst image

LENSMODEL_OPENCV8: residual directions

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1000 2000 3000 4000 5000 6000

Im
a
g

e
r

y

Imager x

-150

-100

-50

 0

 50

 100

 150

Fitted residuals. Directions shown as colors. Magnitudes ignored

LENSMODEL_OPENCV8: conclusions

We see clear patterns in the residuals, so

▶ LENSMODEL_OPENCV8 does not fit our data

Let’s fix it.

Doing it again with LENSMODEL_SPLINED_STEREOGRAPHIC
Let’s re-process the same calibration data using the splined model.
We run the same command as before, but using the
LENSMODEL_SPLINED_STEREOGRAPHIC_ . . .
order=3_Nx=30_Ny=18_fov_x_deg=150 model. This is one long
string.

This model has 1084 parameters.

$ mrcal-calibrate-cameras
--lensmodel LENSMODEL_SPLINED_STEREOGRAPHIC_ ...
... order=3_Nx=30_Ny=18_fov_x_deg=150 ...

...
RMS reprojection error: 0.2 pixels
Worst residual (by measurement): 1.3 pixels
Noutliers: 28 out of 16464 total points: 0.2% of the data
calobject_warp = [-1.26851438e-04 -8.03269701e-05]

LENSMODEL_OPENCV8 residuals histogram

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

O
b
se

rv
e
d
 f

re
q
u
e
n
cy

Residuals (pixels). x and y components of error are counted separately

Distribution of fitted residuals and a gaussian fit for all the cameras

LENSMODEL_SPLINED_... residuals histogram

 0

 1000

 2000

 3000

 4000

 5000

 6000

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

O
b
se

rv
e
d
 f

re
q
u
e
n
cy

Residuals (pixels). x and y components of error are counted separately

Distribution of fitted residuals and a gaussian fit for all the cameras

LENSMODEL_OPENCV8: the worst image

LENSMODEL_SPLINED_...: the worst image

LENSMODEL_OPENCV8: residual directions

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1000 2000 3000 4000 5000 6000

Im
a
g

e
r

y

Imager x

-150

-100

-50

 0

 50

 100

 150

Fitted residuals. Directions shown as colors. Magnitudes ignored

LENSMODEL_SPLINED_...: residual directions

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1000 2000 3000 4000 5000 6000

Im
a
g

e
r

y

Imager x

-150

-100

-50

 0

 50

 100

 150

Fitted residuals. Directions shown as colors. Magnitudes ignored

Conclusion

We have good evidence that
LENSMODEL_SPLINED_STEREOGRAPHIC fits this lens much better
than LENSMODEL_OPENCV8

Differencing

We computed the calibration two different ways. How different are
the two models?

Differencing

0.50.5

0.50.5

0.50.5

0.50.5

0.50.5 0.50.5

0.50.5

0.50.5

0.50.50.50.5
0.50.5

0.50.5

0.50.5

0.50.5
0.50.5

0.50.5

0.50.5

0.50.5

0.50.5

0.50.5

0.50.5 1111

11

11

11

11

11
11

11

11

11

11

11
11 11

1.51.5

1.51.5

1.51.5
1.51.5

1.51.5

1.51.5
1.51.5

1.51.5

1.51.5

1.51.5

1.51.5

1.51.5

1.51.5

1.51.5

1.51.5

1.51.5
1.51.5

22

22

22

22

22

2222

22

22

22

22

2.52.5

2.52.5

2.52.5
2.52.52.52.5

2.52.5

2.52.5

2.52.5

2.52.5 33
33

33

33

33

33

33

33

33

33 3.53.5
3.53.5 3.53.5

3.53.5

3.53.5

3.53.5

3.53.5

3.53.5

3.53.5

3.53.5 44
44

4444

44

44

44

44

44

44

44

 0 1000 2000 3000 4000 5000 6000

 0

 500

 1000

 1500

 2000

 2500

 3000

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Diff looking at 2 models, computing extrinsics transform at infinity

Uncertainty

▶ All calibrations are based on observations of the calibration
object (chessboard corners)

▶ These observations always contain some noise (sampling error)
▶ A calibration result is trustworthy only if it is insensitive to

this noise

We quantify this sensitivity by computing a projection uncertainty

Uncertainty from the DTLA data

Computing the uncertainty map from the earlier
LENSMODEL_OPENCV8 calibration:

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.20.2

0.20.2

0.20.2

0.20.2

0.20.2

0.30.3

0.30.3

0.30.30.30.3

0.40.4

0.40.4

0.40.40.40.4

0.50.5

0.50.5

0.50.50.50.5

0.60.6

0.60.60.60.6

0.70.7

0.70.70.80.8

 0 1000 2000 3000 4000 5000 6000

 0

 500

 1000

 1500

 2000

 2500

 3000

 0

 0.2

 0.4

 0.6

 0.8

 1

Projection uncertainty (in pixels) based on calibration input noise. Looking out to infinity

Uncertainty from the DTLA data

And from the LENSMODEL_SPLINED_STEREOGRAPHIC_...
calibration:

0.10.1

0.10.1

0.10.10.10.1

0.10.1

0.10.1
0.10.1

0.10.1

0.20.2

0.20.2

0.20.2

0.20.2

0.20.2
0.20.20.20.2

0.20.2

0.20.2

0.20.2
0.20.2

0.30.3

0.30.3

0.30.3

0.30.3

0.30.3

0.30.30.30.3

0.30.3

0.30.3

0.30.3

0.30.3

0.40.4

0.40.4
0.40.4

0.40.4

0.40.4
0.40.40.40.4

0.40.4

0.40.4

0.40.4
0.40.40.50.50.50.5

0.50.5

0.50.5 0.50.5

0.50.5

0.50.5
0.50.5

0.50.5

0.50.5

0.60.60.60.6

0.60.6

0.60.6 0.60.6

0.60.6

0.60.6
0.60.6

0.60.6

0.60.6

0.70.7

0.70.7

0.70.7

0.70.7

0.70.7
0.70.70.70.7

0.70.70.70.7

0.70.7

0.80.8

0.80.8
0.80.8

0.80.8

0.80.8

0.80.8

0.80.8

0.80.80.80.8

0.80.8

0.90.9

0.90.9
0.90.9

0.90.9

0.90.9

0.90.9

0.90.9

0.90.9

0.90.90.90.9

0.90.9

11

11
11

11

11

11

11
1111

11

 0 1000 2000 3000 4000 5000 6000

 0

 500

 1000

 1500

 2000

 2500

 3000

 0

 0.2

 0.4

 0.6

 0.8

 1

Projection uncertainty (in pixels) based on calibration input noise. Looking out to infinity

Ranging note

Let’s revisit an important detail I glossed-over when talking about
differencing and uncertainties. Both computations begin with
p⃗ = unproject (q⃗)

But an unprojection is ambiguous in range, so diffs and
uncertainties are defined as a function of range

Each point projects to the same pixel

But the uncertainty of that
projection varies with range

All the uncertainties reported so far were at ∞

The uncertainty figure
The uncertainty of our LENSMODEL_OPENCV8 calibration at the
center as a function of range:

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 2 4 6 8 10 12 14 16

P
ro

je
ct

io
n
 u

n
ce

rt
a
in

ty
 (

p
ix

e
ls

)

Observation distance

Projection uncertainty (in pixels) based on calibration input noise at q = center

Let’s apply these techniques

We described several analysis techniques:

▶ Visualizing the solve residuals
▶ Computing projection differences between two models
▶ Evaluating projection uncertainty

Let’s use these to answer practical questions

Optimal choreography overview

For many of the following analyses we study the effects of
sampling error. We

▶ Set up a simulated world with some baseline geometry
▶ Scan some parameter
▶ Calibrate
▶ Look at the uncertainty-vs-range plots as a function of that

parameter

How dense should our chessboard be?

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30

E
x
p
e
ct

e
d
 w

o
rs

t-
d
ir

e
ct

io
n
 u

n
ce

rt
a
in

ty
 (

p
ix

e
ls

)

Range (m)

Number of chessboard points per side = 5
Number of chessboard points per side = 8

Number of chessboard points per side = 12
Number of chessboard points per side = 15
Number of chessboard points per side = 19
Number of chessboard points per side = 22
Number of chessboard points per side = 26
Number of chessboard points per side = 30

Scanning the calibration object density, keeping the board size constant. Have 1 cameras looking at 100 boards at 2.00m

What should the chessboard corner spacing be?

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14 16 18 20 22

E
x
p
e
ct

e
d
 w

o
rs

t-
d
ir

e
ct

io
n
 u

n
ce

rt
a
in

ty
 (

p
ix

e
ls

)

Range (m)

Distance between adjacent chessboard corners = 0.04
Distance between adjacent chessboard corners = 0.06
Distance between adjacent chessboard corners = 0.09
Distance between adjacent chessboard corners = 0.11
Distance between adjacent chessboard corners = 0.13
Distance between adjacent chessboard corners = 0.15
Distance between adjacent chessboard corners = 0.18
Distance between adjacent chessboard corners = 0.20

 the calibration object spacing, keeping the point count constant, and letting the board grow. Range is constant. Have 1 cameras looking at 100 bo

Do we want tiny boards nearby or giant boards faraway?

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140 160 180 200 220

E
x
p
e
ct

e
d
 w

o
rs

t-
d
ir

e
ct

io
n
 u

n
ce

rt
a
in

ty
 (

p
ix

e
ls

)

Range (m)

Distance between adjacent chessboard corners = 0.04
Distance between adjacent chessboard corners = 0.06
Distance between adjacent chessboard corners = 0.09
Distance between adjacent chessboard corners = 0.11
Distance between adjacent chessboard corners = 0.13
Distance between adjacent chessboard corners = 0.15
Distance between adjacent chessboard corners = 0.18
Distance between adjacent chessboard corners = 0.20

 calibration object spacing, keeping the point count constant, and letting the board grow. Range grows with spacing. Have 1 cameras looking at 100

How far should the chessboards be placed?

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100

E
x
p
e
ct

e
d
 w

o
rs

t-
d
ir

e
ct

io
n
 u

n
ce

rt
a
in

ty
 (

p
ix

e
ls

)

Range (m)

Range-to-chessboards = 0.40
Range-to-chessboards = 1.77
Range-to-chessboards = 3.14
Range-to-chessboards = 4.51
Range-to-chessboards = 5.89
Range-to-chessboards = 7.26
Range-to-chessboards = 8.63

Range-to-chessboards = 10.00

Scanning the distance to observations. Have 1 cameras looking at 100 boards.

How many chessboard observations should we get?

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

E
x
p
e
ct

e
d
 w

o
rs

t-
d
ir

e
ct

io
n
 u

n
ce

rt
a
in

ty
 (

p
ix

e
ls

)

Range (m)

Nframes = 20
Nframes = 45
Nframes = 71
Nframes = 97

Nframes = 122
Nframes = 148
Nframes = 174
Nframes = 200

Scanning Nframes. Have 1 cameras looking out at 0.50m.

What kind of calibration object do we want? Guidelines

▶ More data is good
▶ More chessboard corners
▶ More chessboard observations

▶ The chessboard should fill the imager
▶ Close-ups
▶ Big chessboards

Questions:

▶ So what kind of calibration object do we want? Are
chessboards the right choice?

▶ Should we place the chessboard immediately in front of the
lens? Should we use a giant chessboard?

Chessboards? Circles? AprilTags? Charuco?

mrcal doesn’t care!

▶ Grids of circles (and possibly AprilTags) don’t directly observe
the point, so they could be biased. mrcal has a visual
validation tool: mrcal-reproject-to-chessboard that
produces a validation sequence

▶ Anything with AprilTags needs a high-resolution-enough
image to resolve the AprilTag. This resolution could instead
be used to cram extra chessboard squares into the image

I use chessboards with the mrgingham detector

file:///home/dima/projects/mrcal/doc/out/external/figures/reprojected-to-chessboard/reprojected-to-chessboard.mp4

The downsides of extreme closeups

Corners out of focus
▶ If the blur is unbiased and gaussian: this will increase the

noise, but we can compensate by gathering more data
▶ It looks like the blur mostly is unbiased and gaussian, but

don’t push it

Noncentral effects become significant
Core assumption of almost all camera modeling and processing:
▶ All rays of light intersect at a single point

This is not a valid assumption near the lens

Noncentrality
The size of the glass in the lens becomes non-negligible as we
observe nearby objects

all intersect at the same point
Far−away rays effectively

all intersect at the same point
Close−up rays do NOT

∆z

Noncentrality

▶ Most triangulation and stereo routines assume a central
projection. This is true for non-closeups

▶ If necessary, noncentral behavior can be modeled:
▶ mrcal has partial support, which was critically important for

some projects
▶ CAHVORE is noncentral with most people throwing away the

noncentrality when they use it
▶ We should try to calibrate and use the cameras beyond where

noncentral effects are significant. mrcal cross-validation will
tell you if you’re too close.

The downsides of huge chessboards

▶ Difficult to manufacture
▶ Expensive
▶ Unstable

mrcal has a simple static deformation model: a parabolic
deformation in x and in y. Usually this isn’t enough to accurately
represent foam boards

The downsides of huge chessboards
Because intrinsics are sensitive to chessboard shape errors.
Simulated intrinsics calibration error due to a board shape error of
1mm in the center in one direction, and 0.5mm in the center in the
other direction. No other noise present.

0.50.5
0.50.50.50.5

0.50.5

0.50.5

11 11

11

1111

11

11 11
11

11

1.51.5 1.51.5

1.51.5 1.51.5

1.51.5
1.51.5

1.51.5 1.51.5

1.51.5

1.51.5

1.51.5

1.51.5

1.51.5

1.51.5

1.51.5

22
22

22

22

22

22

22

2222

22
22

22

22
2.52.5

2.52.5

2.52.5
2.52.5

2.52.5
2.52.5

2.52.5

2.52.5

2.52.5

2.52.5

2.52.5

2.52.5

2.52.52.52.5

2.52.5

2.52.5

2.52.5
33 33

33

33

33

33

33

33

33

33

33

33

3333

3.53.5

3.53.5 3.53.5

3.53.5
3.53.5

3.53.5

3.53.5

3.53.5

3.53.5

3.53.5

3.53.5
3.53.5

44

44
44

44 44

44

44
44

44

 0 1000 2000 3000 4000 5000 6000

 0

 500

 1000

 1500

 2000

 2500

 3000

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Projection error due to a dynamic chessboard shape error

The downsides of huge chessboards

I usually use an Aluminum-honeycomb-backed 1m x 1m square
board. This works well.

What kind of calibration object do we want? Conclusions

▶ Chessboard as large as possible
▶ Placed as close to the camera as possible
▶ With as dense a chessboard grid as possible

Using the mrcal tools to verify that we didn’t go too far

How should we dance? Conclusions

Good

Best

Bad

Best

Use mrcal tools to validate

Which model should we use for the lenses?

Today mrcal supports

▶ OpenCV models with 4,5,8,12 parameters
▶ CAHVOR, CAHVORE
▶ LENSMODEL_SPLINED_STEREOGRAPHIC: the rich, splined

model

Unless you really need compatibility with a legacy system or you
have low accuracy requirements,
LENSMODEL_SPLINED_STEREOGRAPHIC is strongly recommended.

Interpreting the calibration results

Once we have a calibration, we should see how well we did:

▶ We examine the projection uncertainty to make sure we have
enough good data in the right places

▶ We examine the cross-validation diffs to confirm that the
model fits

▶ If these diffs are too high, we examine the residuals to find the
cause of our model errors

Projection uncertainty

▶ Projection uncertainty gauges the effect of sampling error
▶ This is directly affected by the quality of the data we gathered.

Problems with the chessboard dance will show up here
▶ Lean lens models (anothing other than

LENSMODEL_SPLINED_STEREOGRAPHIC) will produce an
overly-optimistic uncertainty report

▶ A low projection uncertainty is a necessary, but not sufficient
condition for a good calibration: uncertainty reporting
samples the input pixel noise, but not the model noise

If the uncertainty is unacceptable, stop there, and fix that first.

DTLA projection uncertainty: OPENCV8

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.20.2

0.20.2

0.20.2

0.20.2

0.20.2

0.30.3

0.30.3

0.30.30.30.3

0.40.4

0.40.4

0.40.40.40.4

0.50.5

0.50.5

0.50.50.50.5

0.60.6

0.60.60.60.6

0.70.7

0.70.70.80.8

 0 1000 2000 3000 4000 5000 6000

 0

 500

 1000

 1500

 2000

 2500

 3000

 0

 0.2

 0.4

 0.6

 0.8

 1

Projection uncertainty (in pixels) based on calibration input noise. Looking out to infinity

DTLA projection uncertainty: splined model

0.10.1

0.10.1

0.10.10.10.1

0.10.1

0.10.1
0.10.1

0.10.1

0.20.2

0.20.2

0.20.2

0.20.2

0.20.2
0.20.20.20.2

0.20.2

0.20.2

0.20.2
0.20.2

0.30.3

0.30.3

0.30.3

0.30.3

0.30.3

0.30.30.30.3

0.30.3

0.30.3

0.30.3

0.30.3

0.40.4

0.40.4
0.40.4

0.40.4

0.40.4
0.40.40.40.4

0.40.4

0.40.4

0.40.4
0.40.40.50.50.50.5

0.50.5

0.50.5 0.50.5

0.50.5

0.50.5
0.50.5

0.50.5

0.50.5

0.60.60.60.6

0.60.6

0.60.6 0.60.6

0.60.6

0.60.6
0.60.6

0.60.6

0.60.6

0.70.7

0.70.7

0.70.7

0.70.7

0.70.7
0.70.70.70.7

0.70.70.70.7

0.70.7

0.80.8

0.80.8
0.80.8

0.80.8

0.80.8

0.80.8

0.80.8

0.80.80.80.8

0.80.8

0.90.9

0.90.9
0.90.9

0.90.9

0.90.9

0.90.9

0.90.9

0.90.9

0.90.90.90.9

0.90.9

11

11
11

11

11

11

11
1111

11

 0 1000 2000 3000 4000 5000 6000

 0

 500

 1000

 1500

 2000

 2500

 3000

 0

 0.2

 0.4

 0.6

 0.8

 1

Projection uncertainty (in pixels) based on calibration input noise. Looking out to infinity

Cross-validation diffs

Now we look for model errors

▶ We split our input dataset, and process the subsets
independently: this samples the model error

▶ We use the differencing method to compare the projection
behaviors

▶ Unlike the uncertainty reporting, interpreting these requires
some thought

Cross-validation diffs: detecting model errors

I want to see

Euncertainty0 + Euncertainty1 ≈ Ecrossvalidation

Let’s look at the downtown LA data. We want to see a
cross-validation diff of ~ 0.2 pixels.

DTLA cross-validation diffs: OPENCV8

0.20.2

0.20.2

0.20.20.40.4

0.40.4 0.40.4

0.40.4

0.40.4
0.40.4

0.60.6

0.60.6

0.60.6

0.60.6

0.60.6

0.60.60.60.6 0.60.6 0.60.6

0.60.6

0.80.8

0.80.8

0.80.8

0.80.8

0.80.8

0.80.8

0.80.8

0.80.8

0.80.8

0.80.8

0.80.8
11

11

11

11

11

11

11

11

1.21.2

1.21.2
1.21.2

1.21.2

1.21.2

1.21.2

1.21.2
1.21.2

1.41.41.41.4

1.41.4

1.41.4

1.41.4

1.41.4

1.41.4

1.41.4

1.41.4

1.61.6

1.61.61.61.6

1.61.6

1.61.6

1.61.61.61.6

1.61.6

1.61.6

1.61.6

1.61.6

1.81.8

1.81.8

1.81.8

1.81.8

1.81.8

1.81.8

22

22

22

22

22

22

 0 1000 2000 3000 4000 5000 6000

 0

 500

 1000

 1500

 2000

 2500

 3000

 0

 0.5

 1

 1.5

 2

Cross-validation for LENSMODEL_OPENCV8

DTLA cross-validation diffs: splined model

0.20.2

0.20.2
0.20.2

0.20.2

0.20.2

0.20.20.20.2

0.20.2
0.20.2

0.20.2

0.20.2

0.20.2

0.20.2

0.20.2

0.20.2

0.20.2

0.40.4

0.40.40.40.4

0.40.4

0.40.4 0.40.4
0.40.4

0.40.4

0.40.4

0.40.4

0.40.4

0.40.4

0.40.4
0.40.4

0.60.6
0.60.6

0.60.6
0.60.6

0.60.6 0.60.6

0.60.6

0.60.6

0.60.6

0.60.6

0.60.6

0.60.6

0.60.6

0.60.6

0.80.8
0.80.8 0.80.8

0.80.8

0.80.8

0.80.8

0.80.80.80.8

0.80.8

0.80.8

0.80.8

0.80.8
0.80.8

0.80.8

0.80.8 0.80.8

11 11

11 11

1111

11

11

11

11

11

11

11

11
11

11

11
11

11
11

11

1.21.2
1.21.2

1.21.2

1.21.2
1.21.2

1.21.2

1.21.2

1.21.2

1.21.2

1.21.2

1.21.21.21.2

1.21.2
1.21.2 1.21.21.21.2

1.21.2

1.41.4

1.41.4

1.41.41.41.4
1.41.4

1.41.4

1.41.4

1.41.4

1.41.4
1.41.4

1.41.41.41.4 1.41.41.41.4

1.41.4

1.61.6

1.61.6

1.61.6 1.61.6
1.61.6

1.61.6

1.61.6

1.61.6

1.61.61.61.6

1.61.61.61.61.61.6

1.61.6

1.81.8

1.81.8

1.81.8 1.81.8

1.81.8

1.81.8

1.81.81.81.81.81.8

1.81.81.81.81.81.8

1.81.8

22

22

22 22

22

22

2222
22

222222

22

 0 1000 2000 3000 4000 5000 6000

 0

 500

 1000

 1500

 2000

 2500

 3000

 0

 0.5

 1

 1.5

 2

Cross-validation for LENSMODEL_SPLINED_STEREOGRAPHIC

DTLA cross-validation diffs

▶ Clearly the LENSMODEL_OPENCV8 result has issues
▶ But the LENSMODEL_SPLINED_STEREOGRAPHIC result has

too-high errors too

Because I captured images from too close to the lens, and we’re
seeing non-negligible noncentral behavior. Asking mrcal to model
that behavior produces:

DTLA cross-validation diffs: splined model, noncentral

0.20.2
0.20.2

0.20.20.20.2

0.20.2
0.20.2

0.20.2

0.20.2

0.20.2

0.20.2

0.20.2

0.20.2
0.20.2

0.20.2

0.20.2

0.20.2

0.20.2

0.20.2

0.20.2

0.20.2
0.20.2

0.40.40.40.4

0.40.4
0.40.4

0.40.4 0.40.4

0.40.4
0.40.4

0.40.4
0.40.4

0.40.4 0.40.4

0.40.4

0.40.4
0.40.4

0.40.4

0.40.4

0.40.4

0.40.4

0.40.4 0.60.6

0.60.6

0.60.6

0.60.6

0.60.60.60.6

0.60.6
0.60.6

0.60.6

0.60.6

0.60.6

0.60.6

0.60.6
0.60.6

0.60.6

0.60.60.60.60.60.6

0.60.6

0.60.6

0.80.8

0.80.8

0.80.8

0.80.80.80.8

0.80.8

0.80.8

0.80.8

0.80.8

0.80.8
0.80.8

0.80.8
0.80.80.80.80.80.8

0.80.8

11

11

11

11

11

11

11
111111

11

11

11
1111

11

11

11

1.21.2

1.21.2

1.21.2
1.21.2

1.21.21.21.21.21.21.21.2

1.21.2
1.21.2

1.21.21.21.2 1.21.2
1.21.21.21.2

1.21.2

1.41.4

1.41.4

1.41.4

1.41.4
1.41.4

1.41.4 1.41.4

1.41.4
1.41.4 1.41.41.41.4

1.41.4

1.41.4

1.61.6

1.61.6

1.61.6

1.61.6

1.61.61.61.6

1.61.6

1.61.6 1.61.6

1.61.6
1.61.61.61.6 1.61.6

1.61.6

1.61.6

1.81.8

1.81.8

1.81.8

1.81.81.81.8

1.81.8

1.81.8

1.81.8
1.81.81.81.8 1.81.81.81.8

1.81.8

22

22

22

222222

22
2222 2222

22

 0 1000 2000 3000 4000 5000 6000

 0

 500

 1000

 1500

 2000

 2500

 3000

 0

 0.5

 1

 1.5

 2

Cross-validation for LENSMODEL_SPLINED_STEREOGRAPHIC, noncentral

DTLA cross-validation diffs

▶ If this calibration was important, I would get a different
dataset from further out

DTLA cross-validation diffs

▶ Here the cross-validation diffs alerted us to the presense of a
problem. They are very good at that

▶ Finding the cause of the problem requires some intuition and
experimentation

Residuals

▶ One technique is available to help diagnose problems:
examining the solve residuals

Residuals

We usually have a lot of images and a lot of residuals. I look at
the few worst-fitting images. Usually I only look at the residuals if

▶ I’m calibrating an unfamiliar system
▶ I don’t trust something about the way the data was collected
▶ Something unknown is causing issues (we’re seeing too-high

cross-validation diffs), and we need to debug

Model errors are indicated with noise that is correlated or
heteroscedastic, so we look for patterns in the residuals.

Let’s examine the residuals we get from common problems

Residuals: poorly-fitting lens model

We saw this in the downtown Los Angeles data

▶ We looked at both the LENSMODEL_OPENCV8 and
LENSMODEL_SPLINED_STEREOGRAPHIC residuals

▶ The latter was much better, but still showed patterns

Earlier residual plots follow below

Residuals: LENSMODEL_OPENCV8: the worst image

Residuals: LENSMODEL_OPENCV8: residual directions

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1000 2000 3000 4000 5000 6000

Im
a
g

e
r

y

Imager x

-150

-100

-50

 0

 50

 100

 150

Fitted residuals. Directions shown as colors. Magnitudes ignored

Residuals: rolling shutter

Some cameras save money on memory by sending pixel data as it
is captured. The result: rolling shutter cameras capture different
parts of the image at different times.

This produces funky residuals

Residuals: rolling shutter

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1000 2000 3000 4000 5000
 0

 1

 2

 3

 4

 5

 6

 7

 8

Residuals from a rolling shutter camera

Residuals: rolling shutter

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1000 2000 3000 4000 5000
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

Residuals from a rolling shutter camera

Residuals: rolling shutter

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1000 2000 3000 4000 5000
 0

 1

 2

 3

 4

 5

 6

 7

Residuals from a rolling shutter camera

Residuals: syncronization errors

▶ In a multi-camera calibration we assume that sets of images
were captured at the same instant in time

▶ This requires a shared physical wire that each camera uses to
initiate image capture

If this doesn’t work right we get the tell-tale residuals, and we can
examine the solution to find the smoking-gun images that prove
the breakage

Residuals: syncronization errors

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1000 2000 3000 4000 5000
 0

 20

 40

 60

 80

 100

 120

 140

Residuals from a broken camera sync

Residuals: syncronization errors

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1000 2000 3000 4000 5000
 0

 20

 40

 60

 80

 100

 120

Residuals from a broken camera sync

Residuals: chessboard shape errors

▶ Errors in chessboard shape are difficult to disentangle from
errors in intrinsics

▶ We can have static and dynamic shape errors:
1. The chessboard is non-flat, but in a way not modeled by the

solver
2. The chessboard shape changes over the course of the

chessboard dance

Residuals: errors due to unstable chessboard shape

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1000 2000 3000 4000 5000
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Residuals from a dynamic chessboard shape error

Residuals: chessboard shape errors. Conclusions

▶ These are hard to conclusively pick out from residual plots
▶ It’s helpful to look at more than just 1 or 2 worst-case images
▶ The most tilted chessboard observations usually show very

consistent residual vectors along the far edge of the
chessboard

Perfectly-corrupted solves
mrcal can report the errors from a solve containing only one kind
of hypothetical error. This measures the effect of problems we
think may exist

A board shape error of 1mm in the center in one direction, and
0.5mm in the center in the other direction does this:

0.50.5
0.50.50.50.5

0.50.5

0.50.5

11 11

11

1111

11

11 11
11

11

1.51.5 1.51.5

1.51.5 1.51.5

1.51.5
1.51.5

1.51.5 1.51.5

1.51.5

1.51.5

1.51.5

1.51.5

1.51.5

1.51.5

1.51.5

22
22

22

22

22

22

22

2222

22
22

22

22
2.52.5

2.52.5

2.52.5
2.52.5

2.52.5
2.52.5

2.52.5

2.52.5

2.52.5

2.52.5

2.52.5

2.52.5

2.52.52.52.5

2.52.5

2.52.5

2.52.5
33 33

33

33

33

33

33

33

33

33

33

33

3333

3.53.5

3.53.5 3.53.5

3.53.5
3.53.5

3.53.5

3.53.5

3.53.5

3.53.5

3.53.5

3.53.5
3.53.5

44

44
44

44 44

44

44
44

44

 0 1000 2000 3000 4000 5000 6000

 0

 500

 1000

 1500

 2000

 2500

 3000

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Projection error due to a dynamic chessboard shape error

Camera stability

Let’s switch gears, and look at some applications

Let’s use the differencing method to gauge stability of intrinsics:

▶ If we stress a camera system (mechanically, thermally, etc),
does its behavior change?

Lens stability

As a baseline, once again here’s the cross-validation diff from the
downtown Los Angeles dataset. This is the difference between two
subsequent solves without touching anything

0.20.2
0.20.2

0.20.20.20.2

0.20.2
0.20.2

0.20.2

0.20.2

0.20.2

0.20.2

0.20.2

0.20.2
0.20.2

0.20.2

0.20.2

0.20.2

0.20.2

0.20.2

0.20.2

0.20.2
0.20.2

0.40.40.40.4

0.40.4
0.40.4

0.40.4 0.40.4

0.40.4
0.40.4

0.40.4
0.40.4

0.40.4 0.40.4

0.40.4

0.40.4
0.40.4

0.40.4

0.40.4

0.40.4

0.40.4

0.40.4 0.60.6

0.60.6

0.60.6

0.60.6

0.60.60.60.6

0.60.6
0.60.6

0.60.6

0.60.6

0.60.6

0.60.6

0.60.6
0.60.6

0.60.6

0.60.60.60.60.60.6

0.60.6

0.60.6

0.80.8

0.80.8

0.80.8

0.80.80.80.8

0.80.8

0.80.8

0.80.8

0.80.8

0.80.8
0.80.8

0.80.8
0.80.80.80.80.80.8

0.80.8

11

11

11

11

11

11

11
111111

11

11

11
1111

11

11

11

1.21.2

1.21.2

1.21.2
1.21.2

1.21.21.21.21.21.21.21.2

1.21.2
1.21.2

1.21.21.21.2 1.21.2
1.21.21.21.2

1.21.2

1.41.4

1.41.4

1.41.4

1.41.4
1.41.4

1.41.4 1.41.4

1.41.4
1.41.4 1.41.41.41.4

1.41.4

1.41.4

1.61.6

1.61.6

1.61.6

1.61.6

1.61.61.61.6

1.61.6

1.61.6 1.61.6

1.61.6
1.61.61.61.6 1.61.6

1.61.6

1.61.6

1.81.8

1.81.8

1.81.8

1.81.81.81.8

1.81.8

1.81.8

1.81.8
1.81.81.81.8 1.81.81.81.8

1.81.8

22

22

22

222222

22
2222 2222

22

 0 1000 2000 3000 4000 5000 6000

 0

 500

 1000

 1500

 2000

 2500

 3000

 0

 0.5

 1

 1.5

 2

Cross-validation for LENSMODEL_SPLINED_STEREOGRAPHIC, noncentral

Lens stability

▶ Then I moved the camera and tripod over by 2m or so, and
gathered more chessboard images. Comparison from before:

0.20.2 0.20.2

0.20.2 0.20.2
0.20.2

0.20.2

0.20.2

0.20.2

0.20.2

0.20.2

0.40.4
0.40.4

0.40.4

0.40.4

0.40.4

0.40.40.40.40.40.4

0.40.4
0.40.4

0.40.4

0.40.4 0.60.60.60.6

0.60.6
0.60.6

0.60.6

0.60.6

0.60.6

0.60.6
0.60.60.60.6

0.60.6

0.60.6

0.80.8

0.80.8

0.80.8

0.80.8

0.80.8

0.80.8

0.80.8

0.80.8

0.80.8
0.80.80.80.8

0.80.8

0.80.8

11

11

11

11

11

11

111111

11
1111

11

11

1.21.2

1.21.2
1.21.2

1.21.2
1.21.2

1.21.2

1.21.2

1.21.2 1.21.2

1.21.2

1.21.2

1.21.2

1.21.2

1.21.2
1.21.2

1.21.2

1.21.2

1.21.2

1.21.2
1.41.4

1.41.4

1.41.4

1.41.4

1.41.41.41.4

1.41.4

1.41.4

1.41.4

1.41.4

1.41.41.41.4

1.41.4

1.41.4

1.41.4
1.41.4

1.41.4

1.41.4

1.41.4

1.61.6

1.61.6

1.61.6

1.61.6

1.61.6

1.61.6

1.61.61.61.6

1.61.6

1.61.6

1.61.6

1.61.6 1.61.6

1.61.6
1.61.6

1.61.6

1.61.6

1.61.6

1.81.8

1.81.8

1.81.8

1.81.81.81.8

1.81.8

1.81.8

1.81.8

1.81.8

1.81.81.81.81.81.8

1.81.8

1.81.8

22 22

22
22

22
22

22
22

22

22

22

22

 0 1000 2000 3000 4000 5000 6000

 0

 500

 1000

 1500

 2000

 2500

 3000

 0

 0.5

 1

 1.5

 2

Lens intrinsics drift

Estimating ranging errors caused by calibration errors

▶ Projection errors aren’t what we ultimately care about
▶ mrcal allows us to propagate these to what we care about

Propagating errors to triangulation:

 9.98

 9.99

 10

 10.01

 10.02

-2.02 -2.01 -2 -1.99 -1.98

Predicted-joint
Predicted-calibration-only

Predicted-observations-only
Observed

Tr
ia

n
g

u
la

te
d

 p
o
in

t
z

(f
o
rw

a
rd

/b
a
ck

)
(m

)

Triangulated point x (left/right) (m)

 9.98

 9.99

 10

 10.01

 10.02

 1.98 1.99 2 2.01 2.02

Predicted-joint
Predicted-calibration-only

Predicted-observations-only
Observed

Tr
ia

n
g

u
la

te
d

 p
o
in

t
z

(f
o
rw

a
rd

/b
a
ck

)
(m

)

Triangulated point x (left/right) (m)

Scene-aware error propagation

If the rough geometry of an observed scene is known beforehand,
we can make a rough expected-error map:

1. Compute ∂range
∂azimuth from the triangulation expression

2. Estimate ∆azimuth by combining expected sampling error
and calibration error

3. ∆range ≈ ∂range
∂azimuth∆azimuth

Scene-aware error propagation

In the downtown Los Angeles scene we observed this calibration
error using LENSMODEL_OPENCV8:

0.50.5

0.50.5

0.50.5

0.50.5

0.50.5 0.50.5

0.50.5

0.50.5

0.50.50.50.5
0.50.5

0.50.5

0.50.5

0.50.5
0.50.5

0.50.5

0.50.5

0.50.5

0.50.5

0.50.5

0.50.5 1111

11

11

11

11

11
11

11

11

11

11

11
11 11

1.51.5

1.51.5

1.51.5
1.51.5

1.51.5

1.51.5
1.51.5

1.51.5

1.51.5

1.51.5

1.51.5

1.51.5

1.51.5

1.51.5

1.51.5

1.51.5
1.51.5

22

22

22

22

22

2222

22

22

22

22

2.52.5

2.52.5

2.52.5
2.52.52.52.5

2.52.5

2.52.5

2.52.5

2.52.5 33
33

33

33

33

33

33

33

33

33 3.53.5
3.53.5 3.53.5

3.53.5

3.53.5

3.53.5

3.53.5

3.53.5

3.53.5

3.53.5 44
44

4444

44

44

44

44

44

44

44

 0 1000 2000 3000 4000 5000 6000

 0

 500

 1000

 1500

 2000

 2500

 3000

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Diff looking at 2 models, computing extrinsics transform at infinity

Scene-aware error propagation

▶ Rough median of calibration error: 0.5 pixels per camera
▶ At worst: 1.0 pixels of calibration error
▶ Noise in stereo matching is ~ 0.3 pixels

So we assume a disparity error of 1.0 + 0.3 = 1.3 pixels

Scene-aware error propagation: left-rectified image

Scene-aware error propagation: disparity

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000 1200
 0

 20

 40

 60

 80

 100

 120

 140

D
is

p
a
ri

ty
 (

p
ix

e
ls

)

Disparity

Scene-aware error propagation: propagated range error

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000 1200
 0.3

 1

 10

 100

 500

E
x
p
e
ct

e
d
 r

a
n
g
e
 e

rr
o
r

(m
)

Expected range error assuming disparity error of 1.3 pixels

Scene-aware error propagation

These errors are correlated and will not average out. They should
be minimized.

Conclusion

▶ mrcal solves many pervasive issues in traditional
camera-modeling toolkits

▶ Allows many practical questions to be addressed directly
▶ Many improvements and extensions and applications planned

and in development

	Overview
	Tour of mrcal
	Tour of mrcal: LENSMODEL_OPENCV8
	Tour of mrcal: LENSMODEL_SPLINED_STEREOGRAPHIC
	Differencing
	Uncertainty
	Ranging note
	Let's apply these techniques
	What kind of calibration object do we want?
	How should we dance?
	Which model should we use for the lenses?
	Results interpretation
	Uncertainty
	Cross-validation
	Residuals
	Recipes
	Model evaluation
	Conclusion

